Journal of Mathematical Sciences

, Volume 182, Issue 1, pp 55–69 | Cite as

Solvability of a free-boundary problem for a heterogeneous elastic body



We consider the free-boundary problem for a stationary elastic system. We prove that the problem has a classical solution if the initial data are close to the stationary solution.


Free boundary classical solution elasticity theor. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary condition, II,” Comm. Pure Appl. Math., 17, 35–92 (1964).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    L. Angheluta, E. Jettestuen, and J. Mathiesen, “The thermodynamics and roughening of solid-solid interfaces,” Phys. Rev. E, 79, 7–25 (2009).CrossRefGoogle Scholar
  3. 3.
    S. N. Antontsev, C. R. Gonçalves, and A. M. Meirmanov, “Exact estimates for the classical solutions to the free boundary problem in the Hele-Shaw cell,” Adv. Diff. Eq., 8, No. 10, 1259–1280 (2003).MATHGoogle Scholar
  4. 4.
    J. W. Barrett, H. Garcke, and R. Nürnberg, “Finite element approximation of a phase field model for surface diffusion of void in a stressed solid,” Math. Comput., 75, 7–41 (2005).CrossRefGoogle Scholar
  5. 5.
    B. V. Bazaliy, “The Stefan problem for the Laplace equation with regard for the curvature of the free boundary,” Ukr. Mat. Zh., 49, No. 10, 1299–1315 (1997).Google Scholar
  6. 6.
    B. V. Bazaliy and N. Vasylyeva, “The transmission problem in domains with a corner point for the Laplace operator in weighted Hölder spaces,” J. Differ. Equ., 249, No. 10, 2476–2499 (2010).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    A. Friedman and F. Reitich, “Quasi-static motion of a capillary drop, I: the two-dimensional case,” J. Differ. Equ., 178, 212–263 (2002).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. Friedman, Bei Hu, and J. J. L. Velazquez, “The evolution of stress intensity factors and the propagation of cracks in elastic media,” Arch. Rat. Mech. Anal., 152, No. 2, 103–139 (2000).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    E. Frolova, “The quasistationary approximation for the Stefan problem,” Probl. Mat. Anal., 31, 167–179 (2005).MATHGoogle Scholar
  10. 10.
    M. Gunther and G. Prokert, “On Stokes flow with variable and degenerate surface tension coefficient,” Nonlin. Differ. Equ. Appl., 12, No. 1, 21–60 (2005).MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. N. Gusakov and S. P. Degtyarev, “Existence of a smooth solution of a problem of filtration,” Ukr. Mat. Zh., 41, No. 9, 1192–1198 (1989).MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Ja Jin, “Estimates of the solutions of the elastic system in a moving domain with free upper interface,” Nonlin. Anal., 51, 1009–1029 (2002).MATHCrossRefGoogle Scholar
  13. 13.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.Google Scholar
  14. 14.
    A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.MATHCrossRefGoogle Scholar
  15. 15.
    O. A. Oleinik, G. A. Iosif’yan, and A. S. Shamaev, Mathematical Problems of the Theory of Strongly Inhomogeneous Elastic Media [in Russian], MGU, Moscow, 1990.Google Scholar
  16. 16.
    M. Siegel, M. J. Miksis, and P. W. Voorhees, “Evolution of material voids for highly anisotropic surface energy,” J. Mech. Phys. Solids, 52, 1319–1353 (2004).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Z. G. Sheftel, “The general theory of boundary-value problems for elliptic systems with discontinuous coefficients,” Ukr. Mat. Zh., 18, No. 3, 132–136 (1966).MATHCrossRefGoogle Scholar
  18. 18.
    Z. G. Sheftel, “Elliptic inequalities and general boundary-value problems for elliptic equations with discontinuous coefficients,” Sib. Mat. Zh., VI, No. 3, 636–668 (1965).Google Scholar
  19. 19.
    V. A. Solonnikov, “Estimates of the solution of the second initial boundary-value problem for the Stokes system in the spaces of functions with derivatives continuous by Hölder with respect to spatial variables,” Zapis. POMI, 259, 254–279 (1999).Google Scholar
  20. 20.
    K. Thornton, J. Agren, and P. W. Voorhees, “Modelling the evolution of phase boundaries in solids at the meso- and nano-scales,” Acta Mater., 51, 5675–5710 (2002).CrossRefGoogle Scholar
  21. 21.
    V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow, 1980.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Institute of Applied Mathematics and Mechanics of the NAS of UkraineDonetskUkraine

Personalised recommendations