Advertisement

Journal of Mathematical Sciences

, Volume 181, Issue 1, pp 18–27 | Cite as

On the direct proof of the Poincaré theorem on invariant tori

  • Aleksandr V. Belyaev
Article
  • 31 Downloads

Abstract

We present the direct proof of the Poincaré theorem on invariant tori.

Keywords

KAM-theory invariant tori quasiperiodic functions Lindstedt series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    V. I. Arnold, “Small denominators II. The proof of the theorem by A. N. Kolmogorov on the conservation of conditionally periodic motions at a small variation of the Hamilton function,” Uspekhi Mat. Nauk, 18, No. 5, 13–40 (1965).Google Scholar
  2. 2.
    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin, 1997.Google Scholar
  3. 3.
    M. V. Bartuccelli and G. Gentile, “Lindstedt series for perturbations of isochronous systems: a review of the general theory,” Rev. Math. Phys., 14, No. 2, 121—171 (2002).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    M. V. Bartuccelli, G. Gentile, and K. V. Georgiou, “KAM theory, Lindstedt series and the stability of the upside-down pendulum,” Discr. Contin. Dynam. Syst., 9, No. 2, 413—426 (2003).MathSciNetMATHGoogle Scholar
  5. 5.
    L. Chierchia and C. Falcolini, “A direct proof of a theorem by Kolmogorov in hamiltonian systems,” Ann. d. Scuola Norm. Sup. di Piza, 21, No. 4, 541–593 (1995).MathSciNetGoogle Scholar
  6. 6.
    L. H. Eliasson, “Absolutely Convergent Series for Quasiperiodic Motions,” Report 2-88, Univ. of Stockholm, Stockholm, 1988.Google Scholar
  7. 7.
    G. Gallavotti and G. Gentile, “Majorant series convergence for twistless KAM tori,” Ergod. Theor. Dynam. Syst., 15, 857–869 (1995).MathSciNetCrossRefGoogle Scholar
  8. 8.
    À. Jorba, R. de la Llave, and M. Zou, “Lindstedt series for lower-dimensional tori,” in: Hamiltonian Systems with Three or More Degrees of Freedom, edited by C. Simó, Kluwer, Dordrecht, 1999, pp. 151—167.Google Scholar
  9. 9.
    A. N. Kolmogorov, “On the conservation of conditionally periodic motions at a small variation of the Hamilton function,” Dokl. Akad. Nauk SSSR, 98, No. 4, 527–530 (1954).MathSciNetMATHGoogle Scholar
  10. 10.
    B. M. Levitan, V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, New York, 1983.Google Scholar
  11. 11.
    J. Moser, “Convergent series expansions for quasi-periodic motions,” Math. Ann., 169, 136–176 (1967).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    H. Poincaré, New Methods of Celestial Mechanics. Selected Works [in Russian], Vol. 1, Nauka, Moscow, 1971.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Donetsk State University of ManagementDonetskUkraine

Personalised recommendations