Modeling of thermoelastic processes in heterogeneous anisotropic shells with initial deformations

  • R. M. Kushnir
  • M. M. Nykolyshyn
  • U. V. Zhydyk
  • V. M. Flyachok

A refined mathematical model of the dynamic problem of coupled thermoelasticity of heterogeneous anisotropic shells taking into account the anisotropy of thermomechanical properties of the material both in the median surface and in the transversal direction is developed. The model includes initial deformations and is based on the assumption that the components of the vector of displacements and temperature are linearly distributed over the thickness. The reliability of the proposed model is evaluated by comparing the solutions obtained on its basis with the corresponding solutions obtained by using the theory of elasticity.


Cylindrical Shell Median Surface Initial Deformation Orthotropic Shell Couple Thermoelasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow (1980).Google Scholar
  2. 2.
    A. D. Kovalenko, Selected Works [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  3. 3.
    Yu. M. Kolyano, Methods of Heat Conduction and Thermoelasticity of a Heterogeneous Body [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  4. 4.
    Yu. M. Kolyano and R. M. Kushnir, “Equations of heat conduction and thermoelasticity for heterogeneous and piecewise-homogeneous plates with rectilinear anisotropy,” in: Generalized Functions in Thermoelasticity [in Russian], Naukova Dumka, Kiev (1980), pp. 19–34.Google Scholar
  5. 5.
    V. V. Vasil’ev (editor), Composite Materials. A Handbook [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  6. 6.
    R. M. Kushnir, M. M. Nykolyshyn, and V. A. Osadchuk, Elastic and Elastoplastic Limit State of Shells with Defects [in Ukrainian], SPOLOM, Lviv (2003).Google Scholar
  7. 7.
    M. M. Nykolyshyn and U. V. Zhydyk, “Variational statements of problems of coupled thermoelasticity of heterogeneous anisotropic shells,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 4, 94–103 (2007).MATHGoogle Scholar
  8. 8.
    W. Nowacki, Teoria Sprężystości, PWN, Warszawa (1970).Google Scholar
  9. 9.
    Ya. S. Podstrigach, V. D. Lomakin, and Yu. M. Kolyano, Thermoelasticity of Bodies of Heterogeneous Structure [in Russian], Nauka, Moscow (1984).Google Scholar
  10. 10.
    Ya. S. Podstrigach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  11. 11.
    Ya. S. Podstrigach, R. N. Shvets, and V. M. Flyachok, “Thermomechanics of anisotropic shells,” Nauch.-Tekhn. Progr. Mashinostroen., Issue 23, 3–18 (1990).Google Scholar
  12. 12.
    V. P. Shevchenko and A. S. Gol’tsev, “Thermoelastic bending of locally heated orthotropic shells,” Prikl. Mekh., 43, No. 3, 80–85 (2007).MATHGoogle Scholar
  13. 13.
    H. J. Ding, H. V. Wang, and W. Q. Chen, “A solution of a non-homogeneous orthotropic cylindrical shell for axisymmetric plane strain dynamic thermoelastic problems,” J. Sound Vibr., 263, 815–829 (2003).CrossRefGoogle Scholar
  14. 14.
    F. W. Keene and R. B. Hetnarsky, “Bibliography on thermal stresses in shells,” J. Therm. Stresses., 13, No. 4, 341–531 (1990).Google Scholar
  15. 15.
    E. J. McQuillen and M. A. Brull, “Dynamic thermoelastic response of cylindrical shells,” Trans. ASME. J. Appl. Mech., 37, No. 3, 15–22 (1970).CrossRefGoogle Scholar
  16. 16.
    J. M. Whitney and C.-T. Sun, “A refined theory for laminated anisotropic cylindrical shells,” Trans. ASME, J. Appl. Mech., 41, No. 2, 441–476 (1974).CrossRefGoogle Scholar
  17. 17.
    O. Yoshihiro and O. Yoshinobu, “Transient thermal stresses of angle-ply laminated cylindrical panel due to nonuniform heat supply in the circumferential direction,” Compos. Struct., 55, No. 1, 95–103 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • R. M. Kushnir
    • 1
  • M. M. Nykolyshyn
    • 1
  • U. V. Zhydyk
    • 2
  • V. M. Flyachok
    • 3
  1. 1.LvivUkraine
  2. 2.LvivUkraine
  3. 3.LvivUkraine

Personalised recommendations