On the asymptotics and stability of the point spectrum of a waveguide with thin shielding obstacle


Some explicit conditions are found for the existence and absence of an eigenvalue in the interval (0, π 2) of the continuous spectrum of the Neumann problem for the Laplace operator in the unit strip with a thin (of width O(ε)) symmetric screen, which, as ε → +0, shrinks into a line segment perpendicular to the sides of the strip. An asymptotics of this eigenvalue is constructed, as well as the asymptotics of the reflection coefficient, which describes Wood’s anomalies, namely, quick changes of the diffraction pattern near a frequency threshold in the continuous spectrum. Bibliography: 32 titles.


Reflection Coefficient Laplace Operator Continuous Spectrum Neumann Problem Explicit Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. A. Ladyzhenskaya, Boundary Value Problems in Mathematical Physics [in Russian], Nauka, Moscow (1973).Google Scholar
  2. 2.
    M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self—Adjoint Operators in Hilbert Space [in Russian], Izd, Leningrad, Univ., Leningrad (1980),Google Scholar
  3. 3.
    C. Wilcox, Scattering Theory for Diffraction Gratings, Springer-Verlag, Berlin (1980).Google Scholar
  4. 4.
    D. V. Evans, M. Levitin, and D. Vasilev, “Existence theorems for trapped modes,” J. Fluid Mech., 261, 21–31 (1994).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    I. Roitberg, D. Vassiliev, and T. Weidl, “Edge resonance in an elastic semistrip,” Quart. J. Appl. Math., 51, No. 1, 1–13 (1998).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    S. A. Nazarov, “Trapped modes for a cylindrical elastic waveguide with damping packing,” Zh. Vych. Mat. Mat. Fiz., 48, 132–150 (2008).Google Scholar
  7. 7.
    G. Cardone, V. Minutolo, and S. A. Nazarov, “Gaps in the essential spectrum of periodic elastic waveguides,” ZAMM, 89, No. 9, 729–741 (2009).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. A. Nazarov, “Concentration of trapped modes in problems of the linear theory of waves on the surface of a liquid,” Mat. Sb., 199, No. 12, 53–78 (2008).Google Scholar
  9. 9.
    S. A. Nazarov, “Sufficient conditions of appearance of trapped modes in problems of the linear theory of surface waves,” Zap. Nauchn. Semin. POMI, 369, 202–223 (2009).Google Scholar
  10. 10.
    S. A. Nazarov and J. H. Videman, “A sufficient condition for the existence of trapped modes for oblique wayes in a two-layer fluid,” Proc. R. Soc. A., 465, 3799–3816 (2009).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    S. A. Nazarov, “Asymptotics of trapped modes and eigenvalues under the threshold of the continuous spectrum of a waveguide with thin shielding obstacle,” Algebra Analiz, 20 (2010) (to appear),Google Scholar
  12. 12.
    I. V. Kamotski and S. A. Nazarov, “Wood’s anomalies and surface waves in problems of scattering on a periodic boundary. I,” Mat. Sb., 190, No. 1, 109–138 (1999).MathSciNetGoogle Scholar
  13. 13.
    I. V. Kamotski and S. A. Nazarov, “Wood’s anomalies and surface waves in problems of scattering on a periodic boundary. II,” Mat. Sb., 190, No. 2, 43–70 (1999).Google Scholar
  14. 14.
    A. Aslanyan, L. Parnovski, and D. Vassiliev, “Complex resonances in acoustic waveguides,” Q. J. Mech. Appl. Math., 53, No. 3, 429–447 (2000).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics, Wave Motion, 45, 16–29 (2007),MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. A. Nazarov and B. A. Plamenevskii, “Self-adjoint elliptic problems: scattering operators and polarization on the edges of the boundary,” Algebra Analiz, 6, No. 4, 157–186 (1994).MathSciNetGoogle Scholar
  17. 17.
    I. V. Kamotski and S. A. Nazarov, “The extended scattering matrix and exponentially decaying solutions of elliptic problems in a cylindrical domain,” Zap. Nauchn. Semin. POMI, 264, 66–82 (2000).Google Scholar
  18. 18.
    R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves [Russian translation], Mir, Moscow (1974).Google Scholar
  19. 19.
    N. Kuznetsov, V. Maz’ya, and B. Vainberg, Linear Water Waves, Cambridge Univ. Press, Cambridge (2002).MATHCrossRefGoogle Scholar
  20. 20.
    S. A. Nazarov and B. A. Plamenevskii, “Principles of scattering for self-adjoint elliptic problems,” in: Problems in Mathematical Physics, Vo. 13, lzd. LGU, Leningrad (1991), pp. 192–244.Google Scholar
  21. 21.
    S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries [in Russian], Nauka, Moscow (1991).Google Scholar
  22. 22.
    S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains,” in: Sobolev Spaces in Mathematics, Vol. II, Maz’ya V. (ed.), International Mathematical Series, Vol. 9 (2008), pp. 261–309.Google Scholar
  23. 23.
    S. Agmon amd L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach spaces,” Comm. Pure Appl. Math., 16, No. 2, 121–239 (1963).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    V. A. Kondratiev, “Boundary value problems for elliptic equations in domains with conic and corner points,” Trudy Mosh. Mat. Obshch., 16, 219–292 (1963).Google Scholar
  25. 25.
    V. G. Maz’ya and B. A. Plamenevskii, “On coefficients in the asymptotics of solutions of elliptic boundary value problems in a domain wih conic points,” Math. Nachr., 76, 29–60 (1977).MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    V. G. Maz’ya and B. A. Plamenevskii, "Estimates in L p, and in the Holder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary-value problems in domains with singular points on the boundary,” Math. Nachr., 77, 25–83 (1979).Google Scholar
  27. 27.
    S. A. Nazarov, “Polynornial property of self-adjoint elliptic boundary value problems and algebraic description of their attributes,” Usp. Mat. Nauk, 54, No. 5, 77–142 (1999).Google Scholar
  28. 28.
    S. A. Nazarov, “Artificial boundary value conditions for searching for surface waves in the diffraction problem on a periodic boundary,” Zh. Vych. Mat. Mat. Fiz., 46, No. 12, 2265–2276 (2006).Google Scholar
  29. 29.
    S. A. Nazarov, “A criterion of existence of damped solutions in the problem on a resonator with cylindrical wayeguide,” Funkt. Anal. Prilozh., 40, No. 2, 2–32 (2006).Google Scholar
  30. 30.
    V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskii, Asymptotics of Solutions of Elliptic Boundary Value Problems Under a Singular Perturbation of a Domain [in Russian], lzd. TSU, Tbilisi (1981).Google Scholar
  31. 31.
    S. A. Nazarov, “Asymptotic conditions at points, self-adjoint extensions of operators, and the method of joined asymptotic expansions,” Trudy St.Peterb. Mat. Obshch., 5, 112–183 (1996).Google Scholar
  32. 32.
    V. Sibruk, Robert Williams Wood Contemporary Magician in Physical Laboratory [in Russian], Gos. lzd. Tekh. Teor. Lit., Moscow Leningrad (1946).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations