Advertisement

Conditions for stabilization of solutions to the first boundary value problem for parabolic equations

  • V. N. Denisov
Article

We study the stabilization to zero of a solution to the first boundary value problem for a parabolic equation. We obtain necessary and sufficient stabilization conditions in the case of the heat equation and sufficient conditions in the case of a parabolic equation with variable coefficients. Bibliography: 14 titles.

Keywords

Parabolic Equation Heat Equation Lateral Surface Class Versus Nonnegative Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967); English transl.: Am. Math. Soc., Providence, RI (1968).Google Scholar
  2. 2.
    O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973); English transl.: Springer, New York etc. (1985).Google Scholar
  3. 3.
    F. Kh. Mukminov, “On uniform stabilization of solutions of the first mixed problem for a parabolic equation” [in Russian], Mat. Sb. 181, No. 11, 1486–1509 (1990); English transl.: Math. USSR, Sb. 71, No. 2, 331–354 (1992).MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. A. Eklund, “Generalized super-solution of parabolic equations,” Trans. Am. Math. Soc. 220, 235–242 (1976).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    D. G. Aronson, “Non-negative solutions of linear parabolic equations,” Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser 22, No. 4, 607–694 (1968).MathSciNetMATHGoogle Scholar
  6. 6.
    E. M. Landis, Second Order Equations of Elliptic and Parabolic Type [in Russian], Nauka, Moscow (1971); English transl.: Am. Math. Soc., Providence, RI (1998).Google Scholar
  7. 7.
    N. A. Watson, “Thermal capacity,” Proc. London Math. Soc., III. Ser. 37, 372–662 (1978).Google Scholar
  8. 8.
    E. M. Landis, “Necessary and sufficient conditions for regularity of a boundary point in the Dirichlet problem for the heat-conduction equation” [in Russian], Dokl. Akad. Nauk SSSR 185, 517–520 (1969); English transl.: Sov. Math., Dokl. 10, 380–384 (1969).MATHGoogle Scholar
  9. 9.
    W. Kaiser and B. Müller, “Removable sets for the heat equation” [in Russian], Vestn. Mosk. Univ., Ser. Mat. Mekh. No. 5, 26–32 (1973); English transl.: Mosc. Univ. Math. Bull. 28 (1973), No. 5–6, 21–26 (1974).MATHGoogle Scholar
  10. 10.
    E. Lanconelli, “Sul problema di Dirichlet per l’equazione del calore,” Ann. Mat. Pura Appl., IV. Ser. 97, 83–114 (1973).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Yu. A. Alkhutov, “Removable singularities of solutions of second order parabolic equations” [in Russian], Mat. Zametki 50, No .5, 9–17 (1991); English transl.: Math. Notes 50, No. 5, 1097–1103 (1991).MathSciNetMATHGoogle Scholar
  12. 12.
    R. Gariepy and W. P. Ziemer, “Thermal capacity and boundary regularity,” J. Differ. Equations 45, 374–388 (1982).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    W. Littman, G. Stampacchia, and N. F. Wainberger, “Regular points for elliptic equations with discontinious coefficients,” Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser 17, 43–77 (1963).MATHGoogle Scholar
  14. 14.
    N. S. Landkof, Foundations of Modern Potential Theory [in Russian], Nauka, Moscow (1966); English transl.: Springer, Berlin etc. (1972).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations