Skip to main content
Log in

On the regularity of domains satisfying a uniform hour–glass condition and a sharp version of the Hopf–Oleinik boundary point principle

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We prove that an open, proper, nonempty subset of \({\mathbb{R}}^n\) is a locally Lyapunov domain if and only if it satisfies a uniform hour-glass condition. The limiting cases are as follows: Lipschitz domains may be characterized by a uniform double cone condition, and domains of class may be characterized by a uniform two-sided ball condition. We discuss a sharp generalization of the Hopf–Oleinik boundary point principle for domains satisfying an interior pseudoball condition, for semi-elliptic operators with singular drift and obtain a sharp version of the Hopf strong maximum principle for second order, nondivergence form differential operators with singular drift. Bibliography: 66 titles. Illustrations: 7 figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Jerison and C. E. Kenig, “Boundary behavior of harmonic functions in nontangentially accessible domains,” Adv. Math. 46, No. 1, 80–147 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  2. P. W. Jones, “Quasiconformal mappings and extendability of functions in Sobolev spaces,” Acta Math. 47, 71–88 (1981).

    Article  Google Scholar 

  3. G. David and S. Semmes, “Singular Integrals and Rectifiable Sets in \({\mathbb{R}}^n\): Beyond Lipschitz Graphs,” Astérisque, No. 193 (1991).

  4. S. Hofmann, M. Mitrea, and M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains,” Int. Math. Res. Not. No. 14, 2567–2865 (2010).

    MathSciNet  Google Scholar 

  5. S. Hofmann, M. Mitrea, and M. Taylor, “Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains,” J. Geom. Anal. 17, No. 4, 593–647 (2007).

    MATH  MathSciNet  Google Scholar 

  6. N. M. Gunther, La Théorie du Potentiel et ses Applications aux Problèmes Fondamentaux de la Physique Mathématique, Gauthier-Villars, Paris (1934).

    Google Scholar 

  7. N. M. Gunther, Potential Theory, Ungar, New York (1967).

    Google Scholar 

  8. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin etc. (1983).

    MATH  Google Scholar 

  9. P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel etc. (2007).

    MATH  Google Scholar 

  10. M. S. Zaremba, “Sur un problème mixte relatif à l’équation de Laplace,” Bull. Int. l’Acad. Sci. Cracovie, Série A, Class Math. Nat., 313–344 (1910).

  11. E. Hopf, “A remark on linear elliptic differential equations of second order,” Proc. Am. Math. Soc. 3, 791–793 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  12. O. A. Oleinik, “On properties of solutions of certain boundary problems for equations of elliptic type” [in Russian], Mat. Sb., N. Ser. No. 30(72), 695–702 (1952).

  13. A. V. Bitsadze, Boundary Value Problems for Second Order Elliptic Equations, North-Holland, Amsterdam (1968).

    MATH  Google Scholar 

  14. M. E. Taylor, Partial Differential Equations. 1: Basic Theory, Springer, Berlin (1996).

    MATH  Google Scholar 

  15. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL (1992).

    MATH  Google Scholar 

  16. W. Ziemer, Weakly Differentiable Functions, Springer, New York (1989).

    Book  MATH  Google Scholar 

  17. S. Alexander, “Local and global convexity in complete Riemannian manifolds,” Pac. J. Math. 76, No. 2, 283–289 (1978).

    MATH  Google Scholar 

  18. P. Grisvard, Elliptic Problems in Nonsmooth Domains Pitman, Boston etc. (1985).

    MATH  Google Scholar 

  19. N. S. Nadirashvili, “Lemma on the interior derivative and uniqueness of the solution of the second boundary value problem for second order elliptic equations” [in Russian], Dokl. Akad. Nauk SSSR 261, No. 4, 804–808 (1981); English transl.: Sov. Math., Dokl. 24, 598–601 (1981).

    MATH  Google Scholar 

  20. E. J. McShane, “Extension of range of functions,” Bull. Am. Math. Soc. 40, 837–842 (1934).

    Article  MathSciNet  Google Scholar 

  21. H. Whitney, “Analytic extensions of functions defined on closed sets,” Trans. Am. Math. Soc. 36, 63–89 (1934).

    Article  MathSciNet  Google Scholar 

  22. D. Gilbarg, “Some hydrodynamic applications of function theoretic properties of elliptic equations,” Math. Z. 72, No. 1, 165–174 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. I. Nazarov, A Centennial of the Zaremba–Hopf–Oleinik Lemma, Preprint (2010); arXiv:1101.0164v1

  24. R. Finn and D. Gilbarg, “Asymptotic behavior and uniqueness of plane subsonic flows,” Commun. Pure Appl. Math. 10, No. 1, 23–63 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  25. C. Neumann, “Über die Methode des Arithmetischen Mittels,” Abhand. Königl. Sächs. Ges. Wiss., Leipzig, 10, 662–702 (1888).

    Google Scholar 

  26. A. Korn, Lehrbuch der Potentialtheorie. II. Allgemeine Theorie des logarithmischen Potentials und der Potentialfunctionen in der Ebene, F. Dümmler., Berlin (1901).

    MATH  Google Scholar 

  27. L. Lichtenstein, “Neue Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus,” Math. Zeitschr. 20, 194–212 (1924).

    Article  MathSciNet  Google Scholar 

  28. G. Giraud, “Generalisation des probl`emes sur les op´erations du type elliptique,” Bull. Sci. Math. 56, 316–352 (1932).

    Google Scholar 

  29. G. Giraud, “Problèmes de valeurs à la frontière rèlatifs à certaines données discontinues,” Bull. Soc. Math. Fr. 61, 1–54 (1933).

    MathSciNet  Google Scholar 

  30. C. Miranda, Partial Differential Equations of Elliptic Type Springer, New York etc. (1970).

    MATH  Google Scholar 

  31. M. Keldysch and M. Lavrentiev, “Sur l’unicité de la solution du problème de Neumann,” C. R. (Dokl.) Acad. Sci. URSS 16, No. 3, 141–142 (1937).

    Google Scholar 

  32. V. A. Kondrat’ev and E. M. Landis, “Qualitative theory of second order linear partial differential equations,” Partial Differential Equations III. Encycl. Math. Sci. 32, 87–192 (1991).

    Google Scholar 

  33. M. V. Safonov, Boundary Estimates for Positive Solutions to Second Order Elliptic Equations, Preprint (2008).

  34. L. I. Kamynin, “A theorem on the internal derivative for a weakly degenerate second order elliptic equation” [in Russian], Mat. Sb., Nov. Ser. 126(168), No. 3, 307–326 (1985); English transl.: Math. USSR, Sb. 54, No. 2, 297–316 (1986).

    Article  Google Scholar 

  35. E. Hopf, “Elementare Bemerkung über die Lösung partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus,” Sitzungsberichte Akad. Berlin, 147–152 (1927).

  36. D. Gilbarg, “Uniqueness of axially symmetric flows with free boundaries,” J. Ration. Mech. Anal. 1, 309–320 (1952).

    MATH  MathSciNet  Google Scholar 

  37. E. M. Landis, Second Order Equations of Elliptic Type and Parabolic Type Am. Math. Soc., Providence, RI (1998).

    MATH  Google Scholar 

  38. L. C. Evans, Partial Differential Equations, Am. Math. Soc., Providence, RI (1998).

    MATH  Google Scholar 

  39. L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Univ. Press, Cambridge (2000).

    Book  MATH  Google Scholar 

  40. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, NJ (1967).

    Google Scholar 

  41. A. D. Aleksandrov, “Investigations on the maximum principle. I” [in Russian], Izv. Vyssh. Uchebn. Zaved. Mat. No. 5(6), 126–157 (1958).

  42. A. D. Aleksandrov, “Investigations on the maximum principle. II” [in Russian], Izv. Vyssh. Uchebn. Zaved. Mat. No. 3(10), 3–12 (1959).

  43. A. D. Aleksandrov, “Investigations on the maximum principle. III” [in Russian], Izv. Vyssh. Uchebn. Zaved. Mat. No. 5(12), 16–32 (1959).

  44. A. D. Aleksandrov, “Investigations on the maximum principle. IV” [in Russian], Izv. Vyssh. Uchebn. Zaved. Mat. No. 3(16), 3–15 (1960).

  45. A. D. Aleksandrov, “Investigations on the maximum principle. V” [in Russian], Izv. Vyssh. Uchebn. Zaved. Mat. No. 5(18), 16–26 (1960).

  46. A. D. Aleksandrov, “Investigations on the maximum principle. VI” [in Russian], Izv. Vyssh. Uchebn. Zaved. Mat. No. 1(20), 3–20 (1961).

  47. L. I. Kamynin and B. N. Khimchenko, “On theorems of Giraud type for a second order elliptic operator weakly degenerate near the boundary” [in Russian], Dokl. Akad. Nauk SSSR 224, No. 4, 752–755 (1975); English transl.: Sov. Math., Dokl. 16, No. 5, 1287–1291 (1975).

    MATH  Google Scholar 

  48. L. I. Kamynin and B. N. Khimchenko, “The maximum principle for an elliptic-parabolic equation of the second order” [in Russian], Sib. Mat. Zh. 13, 773–789 (1972); English transl.: Sib. Math. J. 13, 533–545 (1973).

    Article  MATH  Google Scholar 

  49. L. I. Kamynin and B. N. Khimchenko, “Theorems of the Giraud type for second order equations with weakly degenerate nonnegative characteristic part” [in Russian], Sib. Mat. Zh. 18, No. 1, 103–121 (1977); English transl.: Sib. Math. J. 18, 76–91 (1977).

    Article  MATH  Google Scholar 

  50. L. I. Kamynin and B. N. Khimchenko, “Investigations of the maximum principle,” Dokl. Akad. Nauk SSSR 240, No. 4, 774–777 (1978); English transl.: Sov. Math., Dokl. 19, 677–681 (1978).

    MATH  Google Scholar 

  51. R. Výborný, “On certain extensions of the maximum principle,” In: Differential Equations and their Applications, Proc. Copnf. Prague Sept. 1962, pp. 223–228, Academic Press, New York (1963).

    Google Scholar 

  52. L. I. Kamynin and B. N. Khimchenko, “Development of Aleksandrov’s theory of the isotropic strict extremum principle” [in Russian], Differ. Uravn. 16, No. 2, 280–292 (1980); English transl.: Differ. Equations 16, No. 2, 181–189 (1980).

    MATH  MathSciNet  Google Scholar 

  53. C. Pucci, “Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico. I,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat., (8) 23, No. 6, 370–375 (1957).

    Google Scholar 

  54. C. Pucci, “Proprietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico. II,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat., (8) 24, No. 1, 3–6 (1958).

    Google Scholar 

  55. G. M. Lieberman, “Regularized distance and its applications,” Pac. J. Math. 117, No. 2, 329–352 (1985).

    MATH  MathSciNet  Google Scholar 

  56. A. I. Nazarov and N. N. Ural’tseva, Qualitative Properties of Solutions to Elliptic and Parabolic Equations with Unbounded Lower Order Coefficients, Preprint (2009).

  57. A. I. Nazarov and N. N. Ural’tseva, The Harnack Inequality and Related Properties for Solutions to Elliptic and Parabolic Equations with Divergence-Free Lower Order Coefficients [in Russian], Algebra Anal. 23, No. 1, 136–168 (2011); English transl.: St. Petersburg Math. J. 23, No. 1 (2012). [To appear]

  58. M. V. Safonov, “Non-divergence elliptic equations of second order with unbounded drift,” In: Nonlinear Partial Differential Equations and Related Topic, pp. 211–232. Am. Math. Soc., Providence, RI (2010).

    Google Scholar 

  59. L. Nirenberg, “A strong maximum principle for parabolic equations,” Commun. Pure Appl. Math. 6, 167–177 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  60. L. I. Kamynin, “A theorem on the internal derivative for a second order uniformly parabolic equation” [in Russian], Dokl. Akad. Nauk SSSR 299, No. 2, 280–283 (1988); English transl.: Sov. Math., Dokl. 37, No. 2, 373–376 (1988).

    MATH  MathSciNet  Google Scholar 

  61. L. I. Kamynin and B. N. Khimchenko, “The analogues of the Giraud theorem for a second order parabolic equation” [in Russian], Sib. Mat. Zh. 14, No. 1, 86–110 (1973); English transl.: Sib. Math. J. 14, 59–77 (1973).

    Article  MATH  Google Scholar 

  62. L. I. Kamynin and B. N. Khimchenko, “An aspect of the development of the theory of the anisotropic strict A. D. Aleksandrov extremum principle” [in Russian], Differ. Uravn. 19, No. 3, 426–437 (1983); English transl.: Differ. Equations 19, No. 3, 318–327 (1983).

    MATH  MathSciNet  Google Scholar 

  63. A. Carbery, V. Maz’ya, M. Mitrea, and D. J. Rule, The Integrability of Negative Powers of the Solution of the Saint Venant Problem, Preprint (2010).

  64. A. Ancona, “On strong barriers and an inequality of Hardy for domains in \({\mathbb{R}}^n\),” J. London Math. Soc. (2) 34, 247–290 (1986).

    Article  MathSciNet  Google Scholar 

  65. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ (1970).

    MATH  Google Scholar 

  66. C. S. Morawetz, J. B. Serrin, and Y. G. Sinai, Selected Works of Eberhard Hopf with Commentaries, Am. Math. Soc., Providence, RI (2002).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mitrea.

Additional information

Translated from Problems in Mathematical Analysis 57, May 2011, pp. 3–68.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, R., Brigham, D., Maz’ya, V. et al. On the regularity of domains satisfying a uniform hour–glass condition and a sharp version of the Hopf–Oleinik boundary point principle. J Math Sci 176, 281–360 (2011). https://doi.org/10.1007/s10958-011-0398-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0398-3

Keywords

Navigation