Journal of Mathematical Sciences

, Volume 175, Issue 2, pp 186–191 | Cite as

On groups whose all proper subgroups have Chernikov derived subgroups

  • Nikolai N. Semko
  • Oksana A. Yarovaya


We study the groups for which the derived subgroups of all proper subgroups are Chernikov subgroups under condition that they possess a normal system whose factors are locally graduated.


Groups with Chernikov derived subgroup locally graduated group normal system of subgroups normal closure minimality condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Artemovych and L. Kurdachenko, “Groups rich by X-subgroups,” Visn. L’viv. Univ., Ser. Mekh.-Mat., 61, 218–237 (2003).MATHGoogle Scholar
  2. 2.
    V. V. Belyaev and N. F. Sesekin, “On infinite groups of the Miller–Moreno type,” Acta. Math. Acad. Sci. Hungar., 26, Nos. 3–4, 369–376 (1975).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    V. V. Belyaev, “Groups of the Miller–Moreno type,” Sib. Mat. Zh., 19, No. 3, 509–514 (1978).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    K. Doerk and T. Hawkes, Finite Soluble Groups, W. De Gruyter, Berlin, 1992.MATHCrossRefGoogle Scholar
  5. 5.
    Yu. M. Gorchakov, Groups with Finite Classes of Conjugate Elements [in Russian], Nauka, Moscow, 1978.Google Scholar
  6. 6.
    O. H. Kegel and B. A. F. Wehrfritz, Locally Finite Groups, North-Holland, Amsterdam, 1973.MATHGoogle Scholar
  7. 7.
    G. A. Miller and H. C. Moreno, “Non-Abelian groups in which every subgroup is abelian,” Trans. Amer. Math. Soc., 4, 398–404 (1903).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. Yu. Ol’shanskii, Geometry of Defining Relations in Groups, Kluwer, Dordrecht, 1991.Google Scholar
  9. 9.
    J. Otal and J. M. Pena, “Groups, in which every proper subgroup is Chernikov-by-nilpotent or nilpotentby-Chernikov,” Arch. Math., 51, 193–197 (1988).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J. Otal and J. M. Pena, “Infinite locally finite groups of type PSL(2,K) or Sz(K) are not minimal under certain conditions,” Comm. Public. Matem., 32, 43–47 (1988).MathSciNetMATHGoogle Scholar
  11. 11.
    O. Yu. Shmidt, “Groups whose all subgroups are special,” Mat. Sb., 31, 366–372 (1924).MATHGoogle Scholar
  12. 12.
    G. Shute, “Unions of Chevalley groups,” Abstr. Amer. Math. Soc., 3, 260 (1982).Google Scholar
  13. 13.
    O. A. Yarovaya, “On groups whose all proper subgroups are close to Abelian ones,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauk, 4, 36–39 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.National University of the State Taxation Service of UkraineKyiv regionUkraine

Personalised recommendations