Advertisement

Journal of Mathematical Sciences

, Volume 167, Issue 2, pp 197–216 | Cite as

Elastic waveguides: history and the state of the art. II

  • V. V. Meleshko
  • A. A. Bondarenko
  • A. N. Trofimchuk
  • R. Z. Abasov
Article
In this paper, the normal modes of an elastic rectangular waveguide are analyzed. We retrace the key aspects of the almost 150-year history of this problem. Using the superposition method, we have obtained an analytical solution of the problem for four types of symmetry of the wave field. In addition, we have established important differences of the dispersion characteristics of normal modes in a rectangle from the Rayleigh–Lamb modes for an infinite plate and the Pochhammer–Chree modes for a cylinder. We give also an estimate of a series of approximate theories for a rectangular waveguide.

The numerical interpretation of the results of analysis is however necessary, and it is a degree of perfection which it would be very important to give to every application of analysis to the natural sciences. So long as it is not obtained, the solutions may be said to remain incomplete and useless, and the truth which it is proposed to discover is no less hidden in the formulas of analysis than it was in the physical problem itself.

                             J. Fourier [28, Sec. 13]

Keywords

Phase Velocity Normal Mode Dispersion Curve Rayleigh Wave Rectangular Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Bell, The Experimental Foundations of Solid Mechanics, Encyclopedia of Physics, Vol. VIa/1, Springer, Berlin (1973).Google Scholar
  2. 2.
    R. Berning, O. A. Hurzhii, and V. V. Meleshko, “Mixing of a viscous liquid in a rectangular microchannel,” Mat. Metody Fiz.-Mekh. Polya, 50, No. 4, 140–148 (2007).MATHGoogle Scholar
  3. 3.
    Yu. F. Boltov and I. N. Grigor’ev, “Conditions of the dispersion-free propagation of elastic deformations in a solid waveguide with rectangular cross section,” Akust. Zh., 24, No. 3, 413–415 (1978).Google Scholar
  4. 4.
    A. A. Bondarenko, “On one method of determination of the complex roots of dispersion equations,” Dopov. Nats. Akad. Nauk Ukrainy, No. 12, 40–44 (2007).Google Scholar
  5. 5.
    A. A. Bondarenko, “Normal stress waves in a rectangular elastic waveguide,” Akust. Visnyk, 10, No. 4, 12–27 (2007).MathSciNetGoogle Scholar
  6. 6.
    A. E. Vovk, V. V. Gudkov, T. V. Levchenkova, and V. V. Tyutekin, “Normal modes of a solid rectangular waveguide,” Sov. Phys. Acoust., 26, 194–198 (1980).Google Scholar
  7. 7.
    V. T. Grinchenko, E. V. Kostrzhitskaya, and V. V. Meleshko, “Group and phase velocities of normal modes in a rectangular waveguide,” Dopov. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 45–48 (1989).Google Scholar
  8. 8.
    V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bodies [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  9. 9.
    V. T. Grinchenko and V. V. Meleshko, “Properties of harmonic waves propagating along the edge of a right-angle wedge,” Sov. Phys. Acoust., 27, 112–116 (1981).Google Scholar
  10. 10.
    V. T. Grinchenko and V. V. Meleshko, “Dispersion properties of normal modes in a rectangular elastic waveguide,” in: X All-Union Acoust. Conf. (Moscow, June 23–27, 1983), Sec. A, Acoust. Inst., Moscow (1983), pp. 96–99.Google Scholar
  11. 11.
    V. T. Grinchenko and A. F. Ulitko, “A dynamic problem of elasticity theory for a rectangular prism,” Sov. Appl. Mech., 7, 979–984 (1971).CrossRefGoogle Scholar
  12. 12.
    P. A. Daugin, Traité Élémentaire de Physique Théorique et Expérimentale, Tome I, Dezobry & Magdeleine, Paris (1855).Google Scholar
  13. 13.
    P. L. Kapitsa, Experiment, Theory, and Practice [in Russian], Nauka, Moscow (1981).Google Scholar
  14. 14.
    E. V. Kostrzhitskaya and V. V. Meleshko, “Propagation of harmonic waves in an elastic rectangular waveguide,” Sov. Appl. Mech., 26, 773–781 (1990).MATHCrossRefGoogle Scholar
  15. 15.
    V. V. Meleshko, “Improved theories for rectangular elastic waveguides,” Soviet Appl. Mech., 15, 1189–1193 (1979).CrossRefGoogle Scholar
  16. 16.
    V. V. Meleshko, “Propagation of high-frequency longitudinal modes in a rectangular waveguide,” Dopov. Akad. Nauk Ukr. SSR, Ser A, No. 2, 36–40 (1982).Google Scholar
  17. 17.
    V. V. Meleshko, “Homogeneous solutions for an elastic rectangular bar,” in: Topical Aspect of Physicomechanical Investigations, Mechanics, Naukova Dumka, Kiev (2007), pp. 205–231.Google Scholar
  18. 18.
    V. V. Meleshko and A. A. Bondarenko, “The phenomena of “repulsing curves”—a view 30 years later,” Visnyk Dnipropetr. Univ., Ser. Mekhanika, 2, No. 2, 123–128 (2006).Google Scholar
  19. 19.
    V. V. Meleshko, A. A. Bondarenko, S. A. Dovgiy, A. N. Trofimchuk, and G. J. F. van Heijst, “Elastic waveguides: history and the state of the art. I,” J. Math. Sci., 162, No. 1, 99–120 (2009).CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lord Rayleigh, The Theory of Sound, Vol. 1, Macmillan, London (1877).Google Scholar
  21. 21.
    B. Aalami, “Waves in prismatic guides of arbitrary cross section,” Trans. ASME, J. Appl. Mech., 40, 1067–1072 (1973).Google Scholar
  22. 22.
    H. N. Abramson, P. J. Plass, and E. Rippinger, “Stress wave propagation in rods and beams,” Adv. Appl. Mech., 1, 1284–1286 (1948).Google Scholar
  23. 23.
    A. D. S. Barr, “Torsional waves in uniform rods of non-circular section,” J. Mech. Eng. Sci., 4, 127–135 (1962).CrossRefGoogle Scholar
  24. 24.
    M. de Billy, “End resonance in infinite immersed rods of different cross sections,” J. Acoust. Soc. Am., 100, 92–97 (1996).CrossRefGoogle Scholar
  25. 25.
    R. E. Booker, “Velocity dispersion of isotropic rods of square cross section vibrating in the lowest-order longitudinal mode,” J. Acoust. Soc. Am., 45, 1284–1286 (1969).CrossRefGoogle Scholar
  26. 26.
    R. E. Booker, “Velocity dispersion of the lowest-order longitudinal mode in finite rods of square cross sections,” J. Acoust. Soc. Am., 49, 1671–1672 (1971).CrossRefGoogle Scholar
  27. 27.
    C. Chree, “On longitudinal vibrations,” Quart. J. Pure Appl. Math., 23, 317–342 (1889).Google Scholar
  28. 28.
    J. Fourier, The Analytical Theory of Heat, Dover, New York (1955).MATHGoogle Scholar
  29. 29.
    W. B. Fraser, “Stress wave propagation in rectangular bars,” Int. J. Solids Struct., 5, 379–397 (1969).CrossRefGoogle Scholar
  30. 30.
    W. B. Fraser, “Longitudinal elastic waves in square bars,” Trans. ASME, J. Appl. Mech., 37, 537–538 (1970).Google Scholar
  31. 31.
    E. Giebe and E. Blechschmidt, “Experimentelle und theoretische Untersuchungen über Dehnungseigenschwingungen von Stäben und Rohren. II,” Ann. Physik, 410, Issue 5, 457–485 (1933).CrossRefGoogle Scholar
  32. 32.
    W. A. Green, “Vibration of beams — II. Torsional modes,” Quart. J. Mech. Appl. Math., 10, 74–78 (1957).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    W. A. Green, “Vibration of beams — III. Screw modes,” Quart. J. Mech. Appl. Math., 12, 22–28 (1959).MATHCrossRefGoogle Scholar
  34. 34.
    W. A. Green, “Dispersion relations for elastic waves in bars,” in: Progress in Solid Mechanics, North-Holland, Amsterdam, Vol. 1 (1959), pp. 225–261.Google Scholar
  35. 35.
    T. Hayashi, W. J. Song, and J. L. Rose, “Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example,” Ultrasonics, 41, 175–183 (2003).CrossRefGoogle Scholar
  36. 36.
    T. Hayashi, C. Tamayama, and M. Murase, “Wave structure analysis of guided waves in a bar with an arbitrary cross-section,” Ultrasonics, 44, 17–24 (2006).CrossRefGoogle Scholar
  37. 37.
    P. Hertelendy, “An approximate theory governing symmetric motions of elastic rods of rectangular or square cross section,” Trans. ASME, J. Appl. Mech., 35, 333–341 (1968).Google Scholar
  38. 38.
    G. J. Kynch, “Longitudinal and screw vibrations of beams,” Nature, 175, 559 (1955).CrossRefGoogle Scholar
  39. 39.
    G. J. Kynch, “The fundamental modes of vibration of uniform beams for medium wavelengths,” Brit. J. Appl. Phys., 8, 64–73 (1957).CrossRefGoogle Scholar
  40. 40.
    G. J. Kynch and W. A. Green, “Vibration of beams — I. Longitudinal modes,” Quart. J. Mech. Appl. Math., 10, 63–73 (1957).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    G. Lamé, Leçons sur la Théorie Mathématique de L’élasticité des Corps Solides, Mallet-Bachelier, Paris (1852).Google Scholar
  42. 42.
    G. Lamé, Leçons sur les Coordonnées Curvilignes et Leurs Diverses Applications, Mallet-Bachelier, Paris (1859).Google Scholar
  43. 43.
    X. Lü and J. Chu, “Lattice thermal conductivity in a silicon nanowire with square cross section,” J. Appl. Phys., 100, 014305-1–014305-6 (2006).Google Scholar
  44. 44.
    X. Lü, J. Chu, and W. Z. Shen, “Modification of the lattice thermal conductivity in semiconductor rectangular nanowires,” J. Appl. Phys., 93, 1219–1229 (2003).CrossRefGoogle Scholar
  45. 45.
    H. D. McNiven and J. J. McCoy, “Vibration and wave propagation in rods,” in: R. D. Mindlin and Applied Mechanics, Pergamon, New York (1974), pp. 197–225.Google Scholar
  46. 46.
    M. A. Medick, “One-dimensional theories of wave propagation and vibrations in elastic bars of rectangular section,” Trans. ASME, J. Appl. Mech., 33, 489–495 (1966).MathSciNetGoogle Scholar
  47. 47.
    M. A. Medick, “On plate theory and longitudinal waves in noncircular bars,” Trans. ASME, J. Appl. Mech., 34, 513–515 (1967).Google Scholar
  48. 48.
    M. A. Medick, “On dispersion of longitudinal waves in rectangular bars,” Trans. ASME, J. Appl. Mech., 34, 714–717 (1967).Google Scholar
  49. 49.
    M. A. Medick, “Extensional waves in elastic bars of rectangular section,” J. Acoust. Soc. Am., 43, 152–161 (1968).CrossRefGoogle Scholar
  50. 50.
    T. R. Meeker and A. H. Meitzler, “Guided wave propagation in elongated cylinders and plates,” in: Physical Acoustics. Principles and Methods, Vol. 1A, Academic, New York (1964), pp. 111–167.Google Scholar
  51. 51.
    R. D. Mindlin and E. A. Fox, “Vibrations and waves in elastic bars of rectangular cross section,” Trans. ASME, J. Appl. Mech., 27, 152–158 (1960).MathSciNetGoogle Scholar
  52. 52.
    T. Miyamoto and K. Yasuura, “Numerical analysis on isotropic elastic waveguides by mode-matching method. — II. Particle velocities and dispersion characteristics in rods of rectangular cross section,” IEEE Trans. Sonics Ultrason., SU-24, 369–375 (1977).Google Scholar
  53. 53.
    R. W. Morse, “Dispersion of compressional waves in isotropic rods of rectangular cross section,” J. Acoust. Soc. Am., 20, 585–586 (1948).CrossRefGoogle Scholar
  54. 54.
    R. W. Morse, “Dispersion of compressional waves in isotropic rods of rectangular cross section,” J. Acoust. Soc. Am., 20, 833–838 (1948).CrossRefGoogle Scholar
  55. 55.
    R. W. Morse, “The velocity of compressional waves in rods of rectangular cross section,” J. Acoust. Soc. Am., 22, 219–223 (1950).CrossRefGoogle Scholar
  56. 56.
    K. Nagaya, “Stress wave propagation in a bar of arbitrary cross section,” Trans. ASME, J. Appl. Mech., 49, 157–164 (1982).MATHCrossRefGoogle Scholar
  57. 57.
    A. H. Nayfeh and W. G. Abdelrahman, “An approximate model for wave propagation in rectangular rods and their geometrical limits,” J. Vibr. Control, 6, 3–17 (2000).CrossRefGoogle Scholar
  58. 58.
    N. J. Nigro, “Steady-state wave propagation in infinite bars of noncircular cross section,” J. Acoust. Soc. Am., 40, 1501–1508 (1966).CrossRefGoogle Scholar
  59. 59.
    N. Nishiguchi, “Electron scattering by surface vibration in a rectangular quantum wire,” Physica, E13, 1–10 (2002).Google Scholar
  60. 60.
    N. Nishiguchi, Y. Ando, and M. N. Wybourne, “Acoustic phonon modes of rectangular quantum wires,” J. Phys.: Condens. Matter, 9, 5751–5764 (1999).CrossRefGoogle Scholar
  61. 61.
    J. Oliver, “Elastic wave dispersion in a cylindrical rod by a wide-band, short-duration pulse technique,” J. Acoust. Soc. Am., 29, 189–194 (1957).CrossRefGoogle Scholar
  62. 62.
    F. Savart, “Recherchés sur les vibrations longitudinales,” Ann. Chimie Physique (Ser. 2), 65, 337–402 (1837).Google Scholar
  63. 63.
    N. G. Stephen and P. J. Wang, “Saint-Venant decay rates for the rectangular cross section rod,” Trans. ASME, J. Appl. Mech., 71, 429–433 (2004).MATHCrossRefGoogle Scholar
  64. 64.
    H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech., 36, 381–411 (2004).CrossRefGoogle Scholar
  65. 65.
    A. D. Stroock., S. K. W. Dertinger, A. Ajdari, et al., “Chaotic mixer for microchannels,” Science, 295, 647–651 (2002).CrossRefGoogle Scholar
  66. 66.
    A. D. Stroock and G. J. McGraw, “Investigation of the staggered herringbone mixer with a simple analytical model,” Philos. Trans. Roy. Soc. London, A362, 971–986 (2004).Google Scholar
  67. 67.
    K. Tanaka and Y. Iwahashi, “Dispersion relation of elastic waves in bars of rectangular cross section,” Bull. JSME, 20, 922–929 (1977).Google Scholar
  68. 68.
    K. Taweel, S. B. Dong, and M. Kazic, “Wave reflection from the free end of a cylinder with an arbitrary cross-section,” Int. J. Solids Struct., 37, 1701–1726 (2000).MATHCrossRefGoogle Scholar
  69. 69.
    R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am., 64, 1–37 (1978).MATHCrossRefGoogle Scholar
  70. 70.
    J. E. Wade and P. J. Torvik, “Elastic wave-propagation in inhomogeneous bars of several sections,” Trans. ASME, J. Appl. Mech., 40, 1050–1054 (1973).Google Scholar
  71. 71.
    K. Yasuura and T. Miyamoto, “Numerical analysis on isotropic elastic waveguides by mode-matching method. — I. Analytical foundations and general algorithms,” IEEE Trans. Sonics Ultrason., SU-24, 359–368 (1977).Google Scholar
  72. 72.
    J. Zemanek, “An experimental and theoretical investigation of elastic wave propagation in a cylinder,” J. Acoust. Soc. Am., 51, 265–283 (1972).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. V. Meleshko
    • 1
  • A. A. Bondarenko
    • 1
  • A. N. Trofimchuk
    • 2
  • R. Z. Abasov
    • 3
  1. 1.Kiev National UniversityKievUkraine
  2. 2.Institute of Telecommunications and Global Information SpaceUkrainian National Academy of SciencesKievUkraine
  3. 3.Azerbaijan State Oil AcademyBakuAzerbaijan

Personalised recommendations