Advertisement

Journal of Mathematical Sciences

, Volume 167, Issue 2, pp 173–181 | Cite as

Influence of the temperature of dissipative heating on the damping of forced resonance vibrations of a simply supported viscoelastic cylindrical panel with the help of piezoelectric actuators

  • V. I. Kozlov
  • T. V. Karnaukhova
  • M. V. Peresun’ko
Article

We consider the problem of active damping of the forced resonance vibrations of a viscoelastic cylindrical panel with the help of piezoelectric actuators. The end faces of the panel are assumed to be simply supported and heat-insulated. An analytical solution of the problem of electromechanics is obtained. On this basis, the dissipative function is calculated, and the energy equation is solved. We also analyze the influence of the temperature of dissipative heating on the efficiency of active damping of the forced vibrations of a cylindrical panel.

Keywords

Piezoelectric Actuator Curie Point Piezoelectric Effect Dissipative Function Resonance Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    K. Washizu, Variational Methods in Elasticity and Plasticity, Third edition, Pergamon, Oxford (1982).MATHGoogle Scholar
  3. 3.
    Mechanics of Coupled Fields in Structural Elements [in Russian], Vol. 5: V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Naukova Dumka, Kiev (1989).Google Scholar
  4. 4.
    V. G. Dubenets and V. V. Khil’chevskii, Vibrations of Damped Composite Structures [in Russian], Vol. 1, Vyshcha Shkola, Kiev (1995).Google Scholar
  5. 5.
    V. G. Karnaukhov and I. F. Kirichok, Coupled Problems of the Theory of Viscoelastic Plates and Shells [in Russian], Naukova Dumka, Kiev (1986).MATHGoogle Scholar
  6. 6.
    Mechanics of Coupled Fields in Structural Elements [in Russian], Vol. 4: V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity, Naukova Dumka, Kiev (1988).Google Scholar
  7. 7.
    V. G. Karnaukhov and V. I. Kozlov, “Damping of vibrations of viscoelastic cylindrical panels with the help of distributed piezoelectric inclusions,” Mat. Metody Fiz.-Mekh. Polya, 46, No. 1, 134–150 (2003).MATHMathSciNetGoogle Scholar
  8. 8.
    V. G. Karnaukhov and V. V. Mikhailenko, Nonlinear Thermomechanics of Piezoelectric Inelastic Bodies under Monoharmonic Loading [in Russian], Zhitomir Eng.-Technol. Inst., Zhitomir (2005).Google Scholar
  9. 9.
    V. V. Matveev, Damping of Vibrations of Deformable Bodies [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  10. 10.
    A. D. Nashif, D. I. G. Johnes, and J. P. Henderson, Vibration Damping, Wiley, New York (1985).Google Scholar
  11. 11.
    E. F. Crawley and J. Luist, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA J., 25, No. 10, 1373–1384 (1986).CrossRefGoogle Scholar
  12. 12.
    U. Gabbert and H. S. Tzou, Smart Structures and Structronic Systems, Kluwer, Dordrecht (2001).Google Scholar
  13. 13.
    U. Gabbert, H. Köppe, and F. Laugwitz, “Numerical and experimental investigations of adaptive plate and shell structures,” in: J. Holnicki-Szulk and J. Rodellar (editors), Smart Structures, Kluwer, Dordrecht (1999), pp. 71–78.Google Scholar
  14. 14.
    H. Ghoneim, “Application of the electromechanical surface damping to the vibration control of a cantilever plate,” J. Vibr. Acoust., 118, 551–557 (1996).CrossRefGoogle Scholar
  15. 15.
    X. Lu and S. V. Hanagud, “Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics,” IEEE Trans. Ultrasonics, Ferroelectr. Freq. Contr., 31, No. 12, 1582–1592 (2004).Google Scholar
  16. 16.
    L. D. Mauk and C. S. Lynch, “Thermo-electro-mechanical behavior of ferroelectric materials. Part I: Computational micromechanical model versus experimental results,” J. Intell. Mater. Sys. Struct., 14, 587–602 (2003).CrossRefGoogle Scholar
  17. 17.
    S. S. Rao and M. Sunar, “Piezoelectricity and its use in disturbance sensing and control of structure: A survey,” Appl. Mech. Rev., 47, No. 44, 113–123 (1994).CrossRefGoogle Scholar
  18. 18.
    H. S. Tzou and L. A. Bergman, Dynamics and Control of Distributed Systems, Cambridge Univ. Press, Cambridge (1998).CrossRefGoogle Scholar
  19. 19.
    H. S. Tzou, Piezoelectric Shells (Distributed Sensing and Control of Continua), Kluwer, Dordrecht (1993).Google Scholar
  20. 20.
    L. M. Weiland and C. S. Lynch, “Thermo-electro-mechanical behavior of ferroelectric materials. Part II: Introduction of rate and self-heating effects,” J. Int. Mat. Sys. Struct., 14, 602–621 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. I. Kozlov
    • 1
  • T. V. Karnaukhova
    • 2
  • M. V. Peresun’ko
    • 3
  1. 1.Tymoshenko Institute of MechanicsUkrainian National Academy of SciencesKyivUkraine
  2. 2.“KPI” National Technical University of UkraineKyivUkraine
  3. 3.Sukhomlyns’kyi Mykolaiv State UniversityMykolaivUkraine

Personalised recommendations