Advertisement

Journal of Mathematical Sciences

, Volume 166, Issue 6, pp 733–742 | Cite as

On automorphisms of distance-regular graphs

  • A. A. Makhnev
Article
  • 37 Downloads

Abstract

In this paper, we present a survey of results on automorphisms of distance-regular graphs obtained at the department of algebra and topology of IMM UB RAS in the last five years. Also, we explain the Higman method of application of the character theory to the investigation of automorphisms of distance-regular graphs.

Keywords

Automorphism Group Regular Graph Prime Order Intersection Array Empty Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aschbacher, “The nonexistence of rank 3 permutation groups of degree 3250 and subdegree 57,” J. Algebra, 19, No. 3, 538–540 (1971).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    I. N. Belousov, “On strongly regular graphs with μ = 1 and their automorphisms. II,” Tr. IMM UrO RAN, 13, No. 4, 27–33 (2007).MathSciNetGoogle Scholar
  3. 3.
    I. N. Belousov and A. A. Makhnev, “On strongly regular graphs with μ = 1 and their automorphisms” Dokl. Ross. Akad. Nauk, 410, No. 2, 151–155 (2006).MathSciNetGoogle Scholar
  4. 4.
    I. N. Belousov and A. A. Makhnev, “A distance-regular graph with the intersection array {8, 7, 5; 1, 1, 4} and its automorphisms,” Tr. IMM UrO RAN, 13, No. 1, 47–60 (2007).MathSciNetGoogle Scholar
  5. 5.
    I. N. Belousov and A. A. Makhnev, “On automorphisms of generalized octagon of order (2, 4),” Dokl. Ross. Akad. Nauk, 423, No. 2, 151–154 (2008).MathSciNetGoogle Scholar
  6. 6.
    A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer, Berlin (1989).MATHGoogle Scholar
  7. 7.
    P. J. Cameron, Permutation Groups, London Math. Soc., Student Texts, Vol. 45, Cambridge Univ. Press, Cambridge (1999).MATHGoogle Scholar
  8. 8.
    P. J. Cameron and J. van Lint, Graphs, Codes and Designs, London Math. Soc., Student Texts, Vol. 22, Cambridge Univ. Press, Cambridge (1991).MATHGoogle Scholar
  9. 9.
    K. Cooolsaet, R. Degraer, and E. Spence, “The strongly regular (45, 12, 3, 3) graphs,” Electron. J. Combin., 13, No. R32, 1–9 (2006).Google Scholar
  10. 10.
    A. L. Gavrilyuk, “On automorphisms of strongly regular graphs with parameters (784, 116, 0, 20),” Sib. Electron. Mat. Izv., 5, 80–87 (2008).MathSciNetGoogle Scholar
  11. 11.
    A. L. Gavrilyuk, Go Wenbin, and A. A. Makhnev, “On automorphisms of Terwilliger graphs with μ = 2,” Algebra Logika, 47, No. 5, 584–600 (2008).MATHMathSciNetGoogle Scholar
  12. 12.
    A. L. Gavrilyuk and A. A. Makhnev, “Amply regular graphs and block-designs,” Sib. Math. J., 47, No. 4, 609–619 (2006).CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. L. Gavrilyuk and A. A. Makhnev, “On Krein graphs without triangles,” Dokl. Ross. Akad. Nauk, 403, No. 6, 727–730 (2006).MathSciNetGoogle Scholar
  14. 14.
    A. L. Gavrilyuk and A. A. Makhnev, “On automorphisms of distance-regular graphs with the intersection array {60, 45, 8; 1, 12, 50},” Tr. IMM UrO RAN, 13, No. 2, 41–53 (2007).MathSciNetGoogle Scholar
  15. 15.
    V. V. Kabanov and I. M. Tkacheva (Minakova), “On automorphisms of graphs with parameters (115, 18, 1, 3),” in: Trans. 35th Region. Conf. Young Sci., UrO RAN, Ekaterinburg (2004), pp. 30–32.Google Scholar
  16. 16.
    V. I. Kazarina and A. A. Makhnev, “On automorphisms of strongly regular graphs with λ = 2 and μ = 3,” Izv. UGTU, No. 17 (69), 174–194 (2005).Google Scholar
  17. 17.
    A. A. Makhnev and I. M. Minakova, “On automorphisms of graphs with λ = 1, μ = 2,” Diskret. Mat., 16, 95–104 (2004).MATHMathSciNetGoogle Scholar
  18. 18.
    A. A. Makhnev and M. S. Nirova, “Slender partial quadrangles and their automorphisms,” Algebra Logika, 45, No. 5, 603–619 (2006).MATHMathSciNetGoogle Scholar
  19. 19.
    A. A. Makhnev and V. V. Nosov, “On automorphisms of strongly regular graphs with λ = 0, μ = 2,” Mat. Sb., 185, No. 3, 47–68 (2004).MathSciNetGoogle Scholar
  20. 20.
    A. A. Makhnev and V. V. Nosov, “On automorphisms of graphs with λ = 0, μ = 3,” in: Int. Alg. Conf. Abstracts, Izd. Gomelsk. Univ., Gomel (2005), pp. 78–79.Google Scholar
  21. 21.
    A. A. Makhnev and V. V. Nosov, “On automorphisms of strongly regular Krein graphs without triangles,” Algebra Logika, 44, No. 3, 335–354 (2005).MATHMathSciNetGoogle Scholar
  22. 22.
    A. A. Makhnev and D. V. Paduchikh, “Automorphisms of coverings of the strongly regular graph with parameters (81, 20, 1, 6),” Dokl. Ross. Akad. Nauk, 423, No. 1, 25–28 (2008).MathSciNetGoogle Scholar
  23. 23.
    A. A. Makhnev and D. V. Paduchikh, “Covers of the Higman–Sims graph and their automorphisms,” Dokl. Ross. Akad. Nauk, 422, No. 1, 26–29 (2008).MathSciNetGoogle Scholar
  24. 24.
    A. A. Makhnev and D. V. Paduchikh, “On automorphisms group of Aschbacher graph,” Dokl. Ross. Akad. Nauk, 426, No. 3, 310–313 (2009).MathSciNetGoogle Scholar
  25. 25.
    V. V. Nosov, “On automorphisms of graph with parameters (704, 37, 0, 2),” in: Trans. 36th Region. Conf. Young Sci., UrO RAN, Ekaterinburg (2005), pp. 55–60.Google Scholar
  26. 26.
    D. V. Paduchikh, “On automorphisms of the strongly regular graph with parameters (85,14,3,2),” in: Int. Alg. Conf. Abstracts, Izd. Gomelsk. Univ., Gomel (2005), pp. 85–87.Google Scholar
  27. 27.
    I. M. Tkacheva (Minakova), “On automorphisms of graphs with parameters (243, 22, 1, 2),” in: Trans. 35th Region. Conf. Young Sci., UrO RAN, Ekaterinburg (2004), pp. 51–59.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Institute of Mathematics and Mechanics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations