Journal of Mathematical Sciences

, Volume 166, Issue 1, pp 118–126 | Cite as

An application of the fixed point theorem to the inverse sturm–liouville problem

  • D. Chelkak

The Sturm–Liouville operators −y″ + v(x)y on [0, 1] with Dirichlet boundary conditions y(0) = y(1) = 0 are considered. For any 1 ≤ p < ∞, a short proof of the characterization theorem for the spectral data corresponding to v ∈ Lp(0, 1) is given. Bibliography: 10 titles.


Boundary Condition Russia Spectral Data Point Theorem Dirichlet Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Borg, “Eine Umkehrung der Strum-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte,” Acta Math., 78, 1-96 (1946).CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    D Chelkak, P. Kargaev, and E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by potential, characterization,” Comm. Math. Phys., 249, No. 1, 133-196 (2004).CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    D. Chelkak and E. Korotyaev, “Wely-Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval,” J. Funct. Anal., 257, 1546-1588 (2009).CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer-Verlag, New York (1982).MATHGoogle Scholar
  5. 5.
    B. M. Levitan, Inverse Sturm-Liouville problems, VSP, Zeist (1987).MATHGoogle Scholar
  6. 6.
    V. A. Marčenko, “On the theory of second order differential operators,” Dokl. Akad. Nauk SSSR, 72, 457-460 (1950).Google Scholar
  7. 7.
    V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhauser Verlag, Basel (1986).MATHGoogle Scholar
  8. 8.
    J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston (1987).MATHGoogle Scholar
  9. 9.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I, Academic Press, New York (1980).MATHGoogle Scholar
  10. 10.
    A. M. Savchuk and A. A. Shkalikov, “On the properties of maps connected with inverse Sturm-Liouville problems,” Tr. Steklov Mat. Inst., 260, 218-237 (2008).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.St.Petersburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations