Advertisement

Journal of Mathematical Sciences

, Volume 165, Issue 3, pp 403–425 | Cite as

Some problems of mathematical modeling in thermomechanics of bodies of various transparencies subjected to thermal irradiation

  • A. R. Hachkevych
  • R. F. Terletskii
  • M. B. Brukhal’
Article

Features of the statement of problems of thermomechanics for solids of various transparencies for thermal radiation are presented. Approximate approaches to the calculation of temperature in semitransparent solids are analyzed. We investigate the influence of the effects of radiation and transfer of thermal energy on temperatures and stresses in semitransparent and opaque solids on a model problem for an irradiated layer.

Keywords

Heat Release Thermal Radiation Emissivity Factor Thermomechanical Behavior Convective Heat Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Andrianov, Fundamentals of Radiation and Complex Heat Exchange [in Russian], Énergiya, Moscow (1972).Google Scholar
  2. 2.
    Yu. N. Barabanenkov, “Multiple wave scattering on an ensemble of particles and the theory of radiation transfer,” Usp. Fiz. Nauk, 117, No. 1, 46–78 (1975).Google Scholar
  3. 3.
    Yu. N. Barabanenkov and B. M. Finkel’berg, “Method of Green functions in the theory of multiple wave scattering,” in: Theoretical and Applied Problems of Light Scattering [in Russian], Nauka i Tekhnika, Minsk (1974), pp. 171–187.Google Scholar
  4. 4.
    A. G. Blokh, Ya. A. Zhuravlev, and L. N. Ryzhkov, Heat Exchange by Radiation. A Handbook [in Russian], Énergoatomizdat, Moscow (1991).Google Scholar
  5. 5.
    M. Brukhal’, R. Terletskii, and O. Fundak, “Technique for the numerical solution of nonlinear problems of heat transfer in bodies of different transparence for heat radiation,” Visn. Lviv. Univ. Ser. Prykl. Mat. Inform., Issue 13, 59–71 (2007).Google Scholar
  6. 6.
    Ya. Yo. Burak, A. R. Gachkevich, and R. F. Terletskii, “Thermomechanics of bodies of low electric conductivity in external quasistationary electromagnetic fields,” Dokl. Akad. Nauk USSR. Ser. A, No. 7, 38–41 (1989).Google Scholar
  7. 7.
    Ya. Yo. Burak, O. R. Hachkevych, and R. F. Terlets’kyi, “Thermomechanics of multicomponent bodies of low electric conductivity,” in: Modeling and Optimization in Thermomechanics of Electroconductive Inhomogeneous Bodies [in Ukrainian], Vol. 1, SPOLOM, Lviv (2006).Google Scholar
  8. 8.
    Ya. I. Burak, O. R. Hachkevych, and R. F. Terlets’kyi, “Thermomechanics of bodies of low electric conductivity under the action of electromagnetic radiation of the infrared frequency range,” Dopov. Akad. Nauk Ukr. RSR, Ser. A, No. 6, 39–43 (1990).Google Scholar
  9. 9.
    A. A. Burka, N. A. Rubtsov, P. I. Stepanenko, and A. D. Khripunov, “Investigation of nonstationary radiation–conductive heat exchange in selectively absorbing media,” in: Heat–Mass Exchange, Vol. 7: Heat Exchange by Radiation and Complex Heat Exchange [in Russian], Part 2, Izd. Akad. Nauk Bel. SSR, Minsk (1980), pp. 103–112.Google Scholar
  10. 10.
    A. A. Burka, N. A. Rubtsov, and V. P. Stupin, “Theoretical and experimental investigation of heating regimes of organic glass,” in: Heat–Mass Exchange [in Russian], Vol. 6, Part 2, Izd. Akad. Nauk Bel. SSR, Minsk (1980), pp. 132–138.Google Scholar
  11. 11.
    A. R. Gachkevich, “Determination and optimization of the thermally stressed state of electrically conducting bodies in external quasistationary electromagnetic fields,” J. Math. Sci., 67, No. 2, 2930–2934 (1993).CrossRefGoogle Scholar
  12. 12.
    A. R. Gachkevich, Thermomechanics of Electroconductive Bodies under the Action of Quasistationary Electromagnetic Fields [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  13. 13.
    A. R. Gachkevich, Thermoelasticity of Electroconductive Bodies under the Action of Electromagnetic Radiation of Infrared Frequency Range [in Russian], Preprint No. 10-93, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Lvov(1993).Google Scholar
  14. 14.
    A. R. Gachkevich and V. Ya. Boichuk, “Thermomechanical behavior of nonmetallic electrical conductors during high-temperature treatment,” J. Math. Sci., 86, No. 2, 2585–2589 (1997).CrossRefGoogle Scholar
  15. 15.
    A. R. Gachkevich, V. O. Drabyk, B. S. Malkiel', and R. F. Terletskii, “The thermally stressed state of the glass shell of a kinescope under heating by electromagnetic radiation,” J. Math. Sci., 65, No. 5, 1837–1840 (1993).CrossRefGoogle Scholar
  16. 16.
    O. R. Hachkevych, “Mathematical models of thermomechanics of magnetizable and polarizable electrically conducting bodies subject to quasisteady electromagnetic radiation,” J. Math. Sci., 97, No. 1, 3846–3853 (1999).CrossRefGoogle Scholar
  17. 17.
    O. R. Hachkevych, M. H. Hachkevych, Yu. R. Sosnovyi, and R. F. Terlets’kyi, “Modeling of heating regimes of electrovacuum instruments using electromagnetic radiation,” Avtomat. Vyrob. Prots. Mashynobud. Pryladobud., Issue 33, 51–61 (1998).Google Scholar
  18. 18.
    O. R. Hachkevych and O. B. Humenchuk, “Thermoelastic state of a glass hollow sphere under the action of external electromagnetic radiation,” Visn. Derzh. Univ. “Lviv. Politekhn.” Ser. Prykl. Matem., No. 341, 82–92 (1998).Google Scholar
  19. 19.
    O. R. Hachkevych and R. F. Terletskyi, “Models of thermomechanics of magnetizable and polarizable conducting deformable solids,” Mater. Sci., 40, No. 3, 320–336 (2004).Google Scholar
  20. 20.
    O. R. Hachkevych, R. F. Terlets’kyi, and T. L. Kurnyts’kyi, “Mechanothermodiffusion in semitransparent bodies,” in: Modeling and Optimization in Thermomechanics of Electroconductive Inhomogeneous Bodies [in Ukrainian], Vol. 2, SPOLOM, Lviv (2007).Google Scholar
  21. 21.
    B. A. Grigor’ev, Pulse Heating by Radiation [in Russian], Vol. 1, Nauka, Moscow (1974).Google Scholar
  22. 22.
    B. A. Grigor’ev, Pulse Heating by Radiation [in Russian], Vol. 2, Nauka, Moscow (1974).Google Scholar
  23. 23.
    N. B. Delone, Interaction of Laser Radiation with a Matter [in Russian], Nauka, Moscow (1989).Google Scholar
  24. 24.
    Y. Jaluria, Natural Convection: Heat and Mass Exchange, Pergamon Press, Oxford (1980).Google Scholar
  25. 25.
    V. N. Eliseev, “Nonstationary temperature field of a semitransparent shell with inhomogeneously distributed heat sources,” Izv. Vysch. Uchebn. Zaved., Ser. Mashinostroenie, No. 12, 52–59 (1971).Google Scholar
  26. 26.
    V. N. Eliseev, “Generalized solution of a three-dimensional problem of nonstationary heat conduction with volume absorption of radiant energy,” Trudy MVTU, No. 205, 5–43 (1976).Google Scholar
  27. 27.
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, McGraw Hill, New York (1971).Google Scholar
  28. 28.
    A. E. Sheidlin (editor), Radiating Properties of Solid Materials. A Handbook [in Russian], Energiya, Moscow (1974).Google Scholar
  29. 29.
    A. D. Kovalenko, Fundamentals of Thermoelasticity [in Russian], Naukova Dumka, Kiev (1970).Google Scholar
  30. 30.
    Yu. M. Kolyano and I. I. Bernar, “Temperature-induced stresses in a plate under bilateral laser treatment,” Probl. Prochn., No. 5, 36–48 (1983).Google Scholar
  31. 31.
    Yu. M. Kolyano and A. N. Kulik, Temperature Stresses Induced by Volume Sources [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  32. 32.
    F. Kreith and W. Z. Black, Basic Heat Transfer, Harper & Row, New York (1980).Google Scholar
  33. 33.
    L. N. Lavrikov and Yu. F. Yurchenko, Thermal Properties of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  34. 34.
    L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (1973).Google Scholar
  35. 35.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1959).Google Scholar
  36. 36.
    M. L. Levin and E. M. Ryzhov, Theory of Equilibrium Heat Fluctuations in Electrodynamics [in Russian], Nauka, Moscow (1967).Google Scholar
  37. 37.
    A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).Google Scholar
  38. 38.
    B. S. Malkiel’, A. R. Gachkevich, Yu. R. Sosnovyi and R. F. Terletskii, “Temperature fields and stresses in a system of planeparallel layers under heating by electromagnetic radiation,” J. Math. Sci., 63, No. 1, 23–27 (1993).CrossRefGoogle Scholar
  39. 39.
    M. D. Mashkovich, Electric Properties of Inorganic Dielectrics in the Ultrahigh Frequency Range [in Russian], Sovetskoe Radio, Moscow (1969).Google Scholar
  40. 40.
    W. Nowacki, Dynamic Problems in Thermoelasticity, Noordhoff International Publishing, Leyden (1975).Google Scholar
  41. 41.
    V. A. Petrov and N. V. Marchenko, Energy Transfer in Partially Transparent Solid Materials [in Russian], Nauka, Moscow (1985).Google Scholar
  42. 42.
    G. V. Plyatsko and Ya. S. Pidstryhach, “On the stressed state induced by a laser beam in the process of fracture of transparent polymers,” Fiz.-Khim. Mekh. Mater., 6, No. 3, 93–97 (1970).Google Scholar
  43. 43.
    Ya. S. Pidstryhach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  44. 44.
    V. S. Popovych, G. Yu. Harmatii, and O. M. Vovk, “Thermoelastic state of a thermosensitive space with a spherical cavity under conditions of convective-radiation heat exchange,” Mat. Met. Fiz.-Mekh. Polya, 49, No. 3, 168–176 (2006).MATHGoogle Scholar
  45. 45.
    Yu. S. Postol’nyk and A. P. Ohurtsov, Nonlinear Applied Thermomechanics [in Russian], NMTs VO MONU, Kiev (2000).Google Scholar
  46. 46.
    V. I. Baranovskii (editor), Production of Color Picture Tubes [in Russian], Energiya, Moscow (1978).Google Scholar
  47. 47.
    B. Rous, Glass in Electronics [in Russian], Sovetskoe Radio, Moscow (1969).Google Scholar
  48. 48.
    N. A. Rubtsov, Heat Exchange by Radiation in Continuous Media [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  49. 49.
    N. A. Rubtsov and S. D. Sleptsov, Influence of boundary conditions on nonstationary radiative–conductive heat exchange in a layer of semitransparent medium,” Teplofiz. Aérodinam., 12, No. 1, 95–103 (2005).Google Scholar
  50. 50.
    N. N. Rykalin, A. A. Uglov, and L. M. Anishchenko, High Temperature Technological Processes. Thermophysical Fundamentals [in Russian], Nauka, Moscow (1985).Google Scholar
  51. 51.
    N. N. Rykalin, A. A. Uglov, and A. N. Kokora, Laser Treatment [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  52. 52.
    S. B. Maslenkov and E. A. Maslenkova, Steels and Alloys for High Temperatures. A Handbook [in Russian], Part 1, Metallurgiya, Moscow (1991).Google Scholar
  53. 53.
    R. F. Terletskii, Thermostressed State of Bodies of Low Electric Conductivity under the Action of Electromagnetic Radiation [in Russian], Author’s Thesis of the Candidate Degree Thesis (Physicomathematical Sciences), Lvov (1988).Google Scholar
  54. 54.
    C. L. Tien, “Radiation properties of gases,” in Advances in Heat Transfer [Russian translation], Mir, Moscow (1971), pp. 280–360.Google Scholar
  55. 55.
    A. A. Uglov, Yu. M. Kolyano, A. N. Kulik, and F. I. Stotskii, Stresses in plane bodies with absorption under the action of a local heat source,” Fiz. Khim. Obrab. Mater., No. 6, 117–120 (1976).Google Scholar
  56. 56.
    C. A. Wert and R. M. Thomson, Physics of Solids, McGraw-Hill, New York (1970).Google Scholar
  57. 57.
    W. Espe, Materials of High Vacuum Technology, Vol. 2, Pergamon Press, Oxford (1968).Google Scholar
  58. 58.
    R. E. Field and R. Viskanta, “Measurement and prediction of dynamic temperatures in unsymmetrically cooled glass windows,” J. Thermophys. Heat Transfer, 7, 616–623 (1993).CrossRefGoogle Scholar
  59. 59.
    J. D. Fowler, “Radiation-induced RF loss measurements and thermal stresses calculation for ceramic windows,” J. Nuclear Matter., 123, 1359 (1984).CrossRefGoogle Scholar
  60. 60.
    T. Heping, B. Maestre, and M. Lallemand, “Transient and steady-state combined heat transfer in semitransparent materials subjected of a pulse or a step irradiation,” Heat Transfer, 133, 166–173 (1991).CrossRefGoogle Scholar
  61. 61.
    R. B. Hetnarski and F. C. de Bolt, Thermal stresses due to laser radiation. Part 1: heat conduction,” J. Therm. Stresses, 15, 331–333 (1990).CrossRefGoogle Scholar
  62. 62.
    R. B. Hetnarski, L. G. Hector, P. Hosseini Tehrani, and M. R. Eslami, “Thermal stresses due to a laser pulse train: Coupled solution,” in: Thermal Stresses’99. Proc. of the 3rd Int. Congress on Thermal Stresses, (Cracow, June 13–17, 1999), Cracow University of Technology, Cracow (1999), pp. 61–64.Google Scholar
  63. 63.
    K. Hutter and A. A. van de Ven, “Field-matter interaction in thermoelastic solids,” in: Lecture Notes in Physics, Vol. 88, Berlin: Springer, (1978).Google Scholar
  64. 64.
    Ju. A. Krawcow and Ju. I. Or_ow, Optyka Geometryczna O_rodków Niejednorodnych, Wydawnictwo Naukowo-Techniczne, Warszawa (1993).Google Scholar
  65. 65.
    N. A. Rubtsov and E. B. Timmerman, “Thermoelasic processes in semitransparent material under the condition of interaction between thermal and strain fields,” Numer. Heat Transfer., 21, 249–260 (1992).CrossRefGoogle Scholar
  66. 66.
    R. Siegel, “Transient effects of radiative transfer in semitransparent materials,” Int. J. Eng. Sci,. 36, 1701–1739 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. R. Hachkevych
    • 1
    • 2
  • R. F. Terletskii
    • 1
  • M. B. Brukhal’
    • 1
  1. 1.Pidstryhach Institute for Applied Problems of Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine
  2. 2.Technical University of OpoleOpolePoland

Personalised recommendations