Journal of Mathematical Sciences

, Volume 171, Issue 3, pp 331–337 | Cite as

Dennis–Vaserstein type decompositions

  • N. A. Vavilov
  • S. S. Sinchuk

A generalization of the Dennis–Vaserstein decomposition is proved for an arbitrary pair of maximal parabolic subgroups P r and P s in the general linear group GL(n, R), provided that rs ≥ sr (R). The usual Dennis–Vaserstein decomposition is the special case where r = n − 1, s =1. Bibliography: 23 titles.


Russia Classical Group Linear Group Parabolic Subgroup General Linear Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Vavilov, “Parabolic subgroups of Chevalley groups over commutative rings,” Zap. Nauchn. Semin. LOMI, 116, 20–43 (1982).MATHMathSciNetGoogle Scholar
  2. 2.
    L. N. Vasershtein, “Stable rank of rings and the dimension of topological spaces,” Funk. Analiz, 5, No. 2, 102–110 (1971).MATHGoogle Scholar
  3. 3.
    L. N. Vasershtein, “Stability of classical groups over rings,” Mat. Sb., 93, No. 2, 268–295 (1974).MathSciNetGoogle Scholar
  4. 4.
    E. B. Plotkin, “Net subgroups of Chevalley groups and stability problems for the K 1-functor,” Ph.D. Thesis, LGU (1985).Google Scholar
  5. 5.
    E. B. Plotkin, “Surjective stability of the K 1-functor for some exceptional Chevalley groups,” Zap. Nauchn. Semin. POMI, 198, 65–88 (1991).MATHGoogle Scholar
  6. 6.
    A. A. Suslin and M. S. Tulenbaev, “Stability theorems for the Milnor K 2-functor,” Zap. Nauchn. Semin. POMI, 64, 131–152 (1976).MATHMathSciNetGoogle Scholar
  7. 7.
    E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Bak, V. Petrov, and Guoping Tang, “Stability for quadratic K1,” K-Theory, 30, No. 1, 1–11 (2003).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Bak and Guoping Tang, “Stability for hermitian K1,” J. Pure Appl. Algebra, 150, 1–11 (2000).CrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Bass, “K-theory and stable algebra,” Publ. Math. Inst. Hautes Ét. Sci., 22, 5–60 (1964).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    K. Dennis, “Stability for K2,” Lect. Notes. Math., 353, 85–94 (1973).CrossRefMathSciNetGoogle Scholar
  12. 12.
    I. V. Erovenko, “SLN(F[x]) is not boundedly generated by elementary matrices: explicit proof,” Electr. J. Linear Algebra, 11, 162–167 (2004).MATHMathSciNetGoogle Scholar
  13. 13.
    W. van der Kallen, “\( {\text{S}}{{\text{L}}_3}\left( {\mathbb{C}\left[ x \right]} \right) \) does not have bounded word length,” Lect. Notes Math., 966, 357–361 (1982).CrossRefGoogle Scholar
  14. 14.
    M. Kolster, “On injective stability for K2,” Lect. Notes Math., 966, 128–168 (1982).CrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup., 4ème sér., No. 2, 1–62 (1969).Google Scholar
  16. 16.
    E. Plotkin, “Stability theorems for K-functors for Chevalley groups,” in: Proceeding of the Conference on Nonassociative Algebras and Related Topics (Hiroshima-199 ), World Sci., London et al. (1991), pp. 203–217.Google Scholar
  17. 17.
    E. Plotkin, “On the stability of the K1-functor for Chevalley groups of type E7,” J. Algebra, 210, 67–85 (1998).MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    E. Plotkin, M. R. Stein, and N. Vavilov, “Stability of K-functors modeled on Chevalley groups, revisited” (to appear).Google Scholar
  19. 19.
    R. W. Sharpe, “On the structure of the unitary Steinberg group,” Ann. Math., 96, No. 3, 444–479 (1972).CrossRefMathSciNetGoogle Scholar
  20. 20.
    R. W. Sharpe, “On the structure of the Steinberg group St(Λ),” J. Algebra, 68, 453–467 (1981).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. R. Stein, “Surjective stability in dimension 0 for K2 and related functors,” Trans. Amer. Math. Soc., 178, 176–191 (1973).Google Scholar
  22. 22.
    M. R. Stein, “Stability theorems for K1, K2, and related functors modeled on Chevalley groupes,” Japan J. Math., 4, No. 1, 77–108 (1978).MathSciNetGoogle Scholar
  23. 23.
    A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations