Journal of Mathematical Sciences

, Volume 170, Issue 3, pp 340–355 | Cite as

S1-Valued Sobolev maps

  • P. Mironescu


We describe the structure of the space \( {W^{s,p}}\left( {{\mathbb{S}^n};{\mathbb{S}^1}} \right) \), where 0 < s < ∞ and 1 ≤ p < ∞. According to the values of s, p, and n, maps in \( {W^{s,p}}\left( {{\mathbb{S}^n};{\mathbb{S}^1}} \right) \) can either be characterised by their phases or by a couple (singular set, phase).

Here are two examples:
$$ \begin{array}{*{20}{c}} {{W^{{{1} \left/ {{2,6}} \right.}}}\left( {{\mathbb{S}^3};{\mathbb{S}^1}} \right) = \left\{ {{e^{\iota \varphi }}:\varphi \in {W^{{{1} \left/ {{2,6}} \right.}}} + {W^{1,3}}} \right\},} \\ {{W^{{{1} \left/ {{2,3}} \right.}}}\left( {{\mathbb{S}^2};{\mathbb{S}^1}} \right) \approx D \times \left\{ {{e^{\iota \varphi }}:\varphi \in {W^{{{1} \left/ {{2,3}} \right.}}} + {W^{{{{1,3}} \left/ {2} \right.}}}} \right\}.} \\ \end{array} $$

In the second example, D is an appropriate set of infinite sums of Dirac masses. The sense of ≈ will be explained in the paper.

The presentation is based on the papers of H.-M. Nguyen [22], of the author [20], and on a joint forthcoming paper of H. Brezis, H.-M. Nguyen, and the author [15].


Open Problem Sobolev Space Reverse Inclusion Landau Equation Dirac Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Alberti, S. Baldo, and G. Orlandi, “Functions with prescribed singularities,” J. Eur. Math. Soc., 5, No. 3, 275–311 (2003).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Bethuel, “A characterization of maps in H 1(B 3 , S 2) which can be approximated by smooth maps,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, No. 4, 269–286 (1990).MATHMathSciNetGoogle Scholar
  3. 3.
    F. Bethuel and D. Chiron, “Some questions related to the lifting problem in Sobolev spaces,” in Perspectives in nonlinear partial differential equations, Contemp. Math., 446, Amer. Math. Soc., Providence, RI (2007), pp. 125–152.Google Scholar
  4. 4.
    F. Bethuel, G. Orlandi, and D. Smets, “Improved estimates for the Ginzburg-Landau equation: the elliptic case,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4, No. 2, 319–355 (2005).MATHMathSciNetGoogle Scholar
  5. 5.
    F. Bethuel and X. Zheng, “Density of smooth functions between two manifolds in Sobolev spaces,” J. Funct. Anal., 80, 60–75 (1988).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Bourgain and H. Brezis, “On the equation div Y = f and application to control of phases,” J. Amer. Math. Soc., 16, No. 2, 393–426 (2003).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Bourgain, H. Brezis, and P. Mironescu, “Lifting in Sobolev spaces,” J. Anal. Math., 80, 37–86 (2000).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Bourgain, H. Brezis, and P. Mironescu, “H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation,” Publ. Math. Inst. Hautes Études Sci., 99, 1–115 (2004).MATHMathSciNetGoogle Scholar
  9. 9.
    J. Bourgain, H. Brezis, and P. Mironescu, “Lifting, degree, and distributional Jacobian revisited,” Comm. Pure Appl. Mathematics, 58, No. 4, 529–551 (2005).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Bousquet, “Topological singularities in \( {W^{s,p}}\left( {{\mathbb{S}^N},{\mathbb{S}^1}} \right) \),” J. Anal. Math., 102, 311–346 (2007).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Bousquet and P. Mironescu, in preparation.Google Scholar
  12. 12.
    H. Brezis, J.-M. Coron, and E. Lieb, “Harmonic maps with defects,” Comm. Math. Phys., 107, No. 4, 649–705 (1986).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    H. Brezis and P. Mironescu, “Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces,” J. Evol. Equ., 1, 387–404 (2001).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Brezis and P. Mironescu, “Density in W s,p,” in preparation.Google Scholar
  15. 15.
    H. Brezis, P. Mironescu, and H.-M. Nguyen, in preparation.Google Scholar
  16. 16.
    H. Brezis, P. Mironescu, and A. Ponce, “W 1,1-maps with values into \( {\mathbb{S}^1} \),” In: Geometric analysis of PDE and several complex variables, Contemp. Math., 368, Amer. Math. Soc. Providence, RI (2005), pp. 69–100.Google Scholar
  17. 17.
    H. Brezis and L. Nirenberg, “Degree theory and BMO. I. Compact manifolds without boundaries,” Selecta Math. (N.S.) 1, No. 2, 197–263 (1995).Google Scholar
  18. 18.
    F. Demengel, “Une caractérisation des applications de \( {W^{1,p}}\left( {{B^N},{\mathbb{S}^1}} \right) \) qui peuvent être approchées par des fonctions régulières,” C. R. Acad. Sci. Paris Sér. I. Math., 310, No. 7, 553–557 (1990).MATHMathSciNetGoogle Scholar
  19. 19.
    M. Escobedo, “Some remarks on the density of regular mappings in Sobolev classes of SM-valued functions,” Rev. Mat. Univ. Complut. Madrid, 1, No. 1-3, 127–144 (1988).MATHMathSciNetGoogle Scholar
  20. 20.
    P. Mironescu, “Lifting of \( {\mathbb{S}^1} \)-valued maps in sums of Sobolev spaces,” submitted to J. Eur. Math. Soc. Google Scholar
  21. 21.
    B. Muckenhoupt and R. Wheeden, “Weighted norm inequalities for fractional integrals,” Trans. Amer. Math. Soc., 192, 261–274 (1974).MATHMathSciNetGoogle Scholar
  22. 22.
    H.-M. Nguyen, “Inequalities related to liftings and applications,” C. R. Acad. Sci. Paris, Ser. I Math., 346, No. 17–18, 957–962 (2008).MATHGoogle Scholar
  23. 23.
    A. Ponce, personal communication.Google Scholar
  24. 24.
    T. Rivière, “Dense subsets of \( {H^{{{1} \left/ {2} \right.}}}\left( {{\mathbb{S}^2},{\mathbb{S}^1}} \right) \),” Ann. Global Anal. Geom., 18, No. 5, 517–528 (2000).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    R. Schoen and K. Uhlenbeck, “A regularity theory for harmonic maps,” J. Differential Geom., 17, 307–335 (1982).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1LyonFrance
  3. 3.INSA de Lyon, F-69621LyonFrance
  4. 4.École Centrale de LyonLyonFrance
  5. 5.CNRS, UMR5208, Institut Camille Jordan43 blvd du 11 novembre 1918Villeurbanne-CedexFrance

Personalised recommendations