Advertisement

Journal of Mathematical Sciences

, Volume 170, Issue 2, pp 131–172 | Cite as

Multicomponent conjugation problems and auxiliary abstract boundary-value problems

  • V. I. Voititsky
  • N. D. Kopachevsky
  • P. A. Starkov
Article

Keywords

Limit Point Spectral Problem Riesz Basis Stefan Problem Conjugation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. Sh. Abramov, Variational Methods in the Theory of Operator Sheaves. Spectral Optimization [in Russian], Leningrad Univ. (1983).Google Scholar
  2. 2.
    M. S. Agranovich, “Remarks on potential spaces and Besov spaces in Lipschitz domains and on Whitney arrays on their boundaries,” Russ. J. Math. Phys., 15, No. 2, 146–155 (2008).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. S. Agranovich, B. A. Amosov, and M. Levitin, “Spectral problems for the Lam´e system with spectral parameter in boundary conditions on smooth and nonsmooth boundaries,” Russ. J. Math. Phys., 6, No. 3, 247–281 (1999).MATHMathSciNetGoogle Scholar
  4. 4.
    M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, and N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley, Berlin (1999).MATHGoogle Scholar
  5. 5.
    M. S. Agranovich and R. Mennicken, “Spectral value problems for the Helmholtz equation with spectral parameter in boundary condition on a nonsmooth surface,” Sb. Math., 190, No. 1, 29–69 (1998).CrossRefMathSciNetGoogle Scholar
  6. 6.
    O. A. Andronova and N. D. Kopachevsky, “Mixed and spectral problems with surface dissipation of energy,” in: Proc. of Ukrainian Sci. Conf. of Young Scientists and Students on Differential Equations and Applications (in honor of Ya. B. Lopatinskii), Donetsk (Ukraine), December 6-7 (2006), pp. 12–13.Google Scholar
  7. 7.
    O. Andronova and N. Kopachevsky, “Operator approach to dynamic systems with surface dissipation of energy,” in: Int. Conf. “Modern Analysis and Applications” dedicated to the centenary of Mark Krein, Odessa, Ukraine, April 9-14 (2007), p. 11.Google Scholar
  8. 8.
    N. K. Askerov, S. G. Krein, and G. I. Laptev, “Oscillations of a viscous liquid and the associated operational equations,” Funkts. Anal. Prilozh., 2, No. 2, 21–31 (1968).MATHMathSciNetGoogle Scholar
  9. 9.
    T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric [in Russian], Nauka, Moscow (1986).MATHGoogle Scholar
  10. 10.
    T. Ya. Azizov and N. D. Kopachevsky, “On the basis property of the system of eigen- and associated elements of the S. G. Krein problem on normal oscillations of a viscous fluid in an open vessel,” in: Spectral and Evolutionary Problems, 3 (1994), pp. 38–39.Google Scholar
  11. 11.
    V. V. Barkovskii, “A decomposition by eigenfunctions and eigenvectors related to general elliptic problems with an eigenvalue in the boundary condition,” Ukr. Mat. Zh., 19, No. 1, (1967).Google Scholar
  12. 12.
    B. V. Bazalii and S. P. Degtyarev, “On the Stefan problem with kinetic and classical conditions at a free boundary,” Ukr. Mat. Zh., 44, No. 2, 155–166 (1992).CrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Below and G. François, “Spectral asymptotics for the Laplacian under an eigenvalue-dependent boundary condition,” Bull. Belgian Math. Soc. Simon Stevin, 12, No. 4, 505–519 (2005).MATHGoogle Scholar
  14. 14.
    I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems [in Russian], Ada, Krakov (1999).MATHGoogle Scholar
  15. 15.
    I. Chueshov, M. Eller, and I. Lasiecka, “Finite dimension of the attractor for a semilinear wave equation with nonlinear boundary dissipation,” Commun. PDE, 29, No 1–12, 1847-1876 (2004).MATHMathSciNetGoogle Scholar
  16. 16.
    J. Ercolano and M. Schechter, “Spectral theory for operators generated by elliptic boundary-value problems with eigenvalue parameter in boundary conditions,” Commun. Pure Appl. Math., 18, 83–105 (1965).CrossRefMathSciNetGoogle Scholar
  17. 17.
    S. F. Feshchenko, I. A. Lukovskii, B. I. Rabinovich, and L. V. Dokuchaev, Methods of Determination of Adjoint Fluid Masses in Moving Domains [in Russian], Naukova Dumka, Kiev, 216–224 (1969).Google Scholar
  18. 18.
    E. Gagliardo, “Caratterizzazioni delle trace sulla frontiera relative ad alaine classi di funzioni in n variabili,” Rend. Semin. Mat. Univ. Padova, 27, 284–305 (1957).MATHMathSciNetGoogle Scholar
  19. 19.
    I. C. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, Rhode Island (1969).Google Scholar
  20. 20.
    V. I. Gorbachuk and M. L. Gorbachuk, Boundary-Value Problems for Differential Operator Equations [in Russian], Naukova Dumka, Kiev (1984).MATHGoogle Scholar
  21. 21.
    V. A. Grinshtein and N. D. Kopachevsky, On the Spectra of Bounded Self-Adjoint Operators [in Russian], preprint (1989).Google Scholar
  22. 22.
    V. A. Grinshtein and N. D Kopachevsky, “On the p-basicity of a system of eigenelements of a selfadjoint operator-valued function,” Proc. XV All-Union School on Operator Theory in Functional Spaces, Ul’yanovsk, September 5–12, 1990, 1, (1990), p. 12.Google Scholar
  23. 23.
    N. D. Kopachevsky, “On the basis properties of a system of eigenvectors and associated vectors of a self-adjoint operator sheaf I − λA − λ 1 B,” Funkts. Anal. Prilozh., 15, No. 2, 77–78 (1981).CrossRefGoogle Scholar
  24. 24.
    N. D. Kopachevsky, “On the p-basis property of the system of root vectors of a self-adjoint operator pensil I − λA − λ 1 B,” in: Functional Analysis and Applied Mathematics [in Russian], Naukova Dumka, Kiev (1982), pp. 43–55.Google Scholar
  25. 25.
    N. D. Kopachevsky, “On the abstract Green formula for a triplet of Hilbert spaces and its application to the Stokes problem,” Taurida Bull. Inform. Math., No. 2, 52–80 (2004).Google Scholar
  26. 26.
    N. D. Kopachevsky, “On abstract boundary value problems with surface dissipation of energy,” in: Proc. Int. Conf. “Analysis and Partial Differential Equations” (in honor of Prof. B. Bojarsky), Bedlevo, Poland, June 18–24, (2006), p. 23.Google Scholar
  27. 27.
    N. D. Kopachevsky, “The abstract Green formula for mixed boundary-value problems,” Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern., 20(59), No. 2, 3–12 (2007).Google Scholar
  28. 28.
    N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 1. Self-Adjoint Problems for Ideal Fluids, Birkhäuser, Basel–Boston–Berlin (2001).Google Scholar
  29. 29.
    N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 2. Non-Self-Adjoint Problems for Viscous Fluids. Birkhäuser, Basel–Boston–Berlin (2003).Google Scholar
  30. 30.
    N. D. Kopachevsky and S. G. Krein, “The abstract Green formula for a triplet of Hilbert spaces, abstract initial-value and spectral problem,” Ukr. Math. Vist., 1, No. 1, 69–97 (2004).Google Scholar
  31. 31.
    N. D. Kopachevsky, S. G. Krein, and N. Z. Kan, Operator Methods in Linear Hydrodynamics. Evolutionary and Spectral Problems [in Russian], Nauka, Moscow (1989).Google Scholar
  32. 32.
    N. D. Kopachevsky and O. I. Nemirskaya, On the p-Basis Property of the System of Eigenlements of Self-Adjoint Operator-Valued Functions [in Russian], preprint, Simferopol Univ. (1992).Google Scholar
  33. 33.
    N. D. Kopachevsky and P. A. Starkov, “Operator approach to transmission problems for Helmholtz equation,” in: Ukr. Congr. Math., Nonlinear PDEs, Kyiv, August 22–28 (2001), p. 68.Google Scholar
  34. 34.
    N. D. Kopachevsky and P. A. Starkov, “Abstract Green’s formula and transmission problems,” in: Int. Conf. on Functional Analysis and Its Applications dedicated to the 110th anniversary of S. Banach, Lviv, Ukraine, May 28–31 (2002), pp. 112–113.Google Scholar
  35. 35.
    N. D. Kopachevsky, P. A. Starkov, and V. I. Voytitsky, “Abstract Green’s formula and spectral transmission problems,” Int. Conf. Nonlinear PDEs, Yalta, Crimea, Ukraine, September 10–15 (2007), pp. 40–41.Google Scholar
  36. 36.
    N. D. Kopachevsky and V. I. Voytitsky, “On the modified spectral Stefan problem and its abstract generalizations,” in: Operator Theory: Advances and Applications, 191, Birkhäuser, Basel (2009), pp. 373–386.Google Scholar
  37. 37.
    S. G. Krein (ed.), Functional Analysis [in Russian], Nauka, Moscow (1972).Google Scholar
  38. 38.
    S. G. Krein, “On oscillations of a viscous fluid in a vessel,” Dokl. Akad. Nauk SSSR 159, No. 2, 262–265 (1964).MathSciNetGoogle Scholar
  39. 39.
    S. G. Krein and G. I. Laptev, “Motion of a viscous liquid in an open vessel,” Funkts. Anal. Prilozh., 2, No. 1, 40–50 (1968).MATHMathSciNetGoogle Scholar
  40. 40.
    V. E. Liantse and O. G. Storozh, Methods of the Theory of Nonbounded Operators [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  41. 41.
    J.-L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications, Springer-Verlag, Berlin–New York (1972).Google Scholar
  42. 42.
    A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Sheaves [in Russian], Shtiintsa, Kishinev (1986).Google Scholar
  43. 43.
    A. S. Marcus and V. I. Matsaev, “On the basis property for a certain part of the eigenvectors and associated vectors of the self-adjoint operator sheaf,” Math. USSR Sb., 61, No. 2, 289–307 (1988).CrossRefMathSciNetGoogle Scholar
  44. 44.
    A. S. Marcus and V. I. Matsaev, “Comparison theorems for spectra of linear operators and spectral asymptotics,” Tr. Mosk. Mat. Obshch., 45, 133–181 (1982).Google Scholar
  45. 45.
    A. S. Marcus and V. I. Matsaev, “A theorem on comparison of spectra and the spectral asymptotics for Keldysh sheaves,” Math. USSR. Sb., 61, No. 2, 289–307 (1988).CrossRefMathSciNetGoogle Scholar
  46. 46.
    J.-P. Oben, “Approximate solution of elliptic boundary-value problems,” Sov. Math. Dokl., 38, No. 2, 327–331 (1989).Google Scholar
  47. 47.
    B. V. Pal’tzev, “On a mixed problem with a nonuniform boundary conditions for second-ordered elliptic equations with a parameter in Lipschitz domains,” Math. Sb., 187, No. 4, 59–116 (1996).Google Scholar
  48. 48.
    E. V. Radkevich, “On conditions for the existence of classical solutions of the modified Stefan problem (the Gibbs–Thompson law),” Math. USSR Sb., 75, No. 1, 221–246 (1993).MathSciNetGoogle Scholar
  49. 49.
    V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains,” J. London Math. Soc., 60, 237–257 (1999).CrossRefMathSciNetGoogle Scholar
  50. 50.
    R. Showalter, “Hilbert space methods for partial differential equations,” Electron. J. Differ. Eqs. (1994).Google Scholar
  51. 51.
    V. I. Smirnov, A Course in Higher Mathematics. Part V, H. Deutsch, Frankfurt-am-Main (1991).Google Scholar
  52. 52.
    P. A. Starkov, “An operator approach to conjugation problems,” Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern., 15 (54), No. 1, 58–62 (2002).MathSciNetGoogle Scholar
  53. 53.
    P. A. Starkov, “A case of a general position for an operator sheaf arising in studying of conjugation problems,” Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern., 15 (54), No. 2, 82–88 (2002).Google Scholar
  54. 54.
    P. A. Starkov, “The study of conjugation problems for exceptional values of a fixed parameter,” Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern., 16 (55), No. 2, 81–89 (2003).Google Scholar
  55. 55.
    P. A. Starkov, “On the basis property of a system of eigenelements in conjugation problems,” Taurida Bull. Inform. Math., 1, 118–131 (2003).Google Scholar
  56. 56.
    P. A. Starkov, “Examples of multicomponent conjugation problems,” Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern., 18 (57), No. 1, 89–94 (2005).MathSciNetGoogle Scholar
  57. 57.
    L. R. Volevich and S. G. Gindikin, Generalized Functions and Convolution Equations [in Russian], Nauka, Moscow (1994).Google Scholar
  58. 58.
    V. I. Voytitsky, “Abstract spectral Stefan problem,” Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern., 19 (58), No. 2, 20–28 (2006).Google Scholar
  59. 59.
    V. I. Voytitsky, “On spectral problems generated by the Stefan problem with the Gibbs–Thompson conditions,” Nonlin. Boundary-Value Problems, 17, 31–49 (2007).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. I. Voititsky
    • 1
  • N. D. Kopachevsky
    • 1
  • P. A. Starkov
    • 1
  1. 1.Faculty of Mathematics and Informatics, Chair of Mathematical AnalysisTaurida National V. I. Vernadsky UniversitySimferopolUkraine

Personalised recommendations