# Multicomponent conjugation problems and auxiliary abstract boundary-value problems

Article

First Online:

- 28 Downloads
- 3 Citations

## Keywords

Limit Point Spectral Problem Riesz Basis Stefan Problem Conjugation Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.Yu. Sh. Abramov,
*Variational Methods in the Theory of Operator Sheaves. Spectral Optimization*[in Russian], Leningrad Univ. (1983).Google Scholar - 2.M. S. Agranovich, “Remarks on potential spaces and Besov spaces in Lipschitz domains and on Whitney arrays on their boundaries,”
*Russ. J. Math. Phys.*,**15**, No. 2, 146–155 (2008).MATHCrossRefMathSciNetGoogle Scholar - 3.M. S. Agranovich, B. A. Amosov, and M. Levitin, “Spectral problems for the Lam´e system with spectral parameter in boundary conditions on smooth and nonsmooth boundaries,”
*Russ. J. Math. Phys.*,**6**, No. 3, 247–281 (1999).MATHMathSciNetGoogle Scholar - 4.M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, and N. N. Voitovich,
*Generalized Method of Eigenoscillations in Diffraction Theory*, Wiley, Berlin (1999).MATHGoogle Scholar - 5.M. S. Agranovich and R. Mennicken, “Spectral value problems for the Helmholtz equation with spectral parameter in boundary condition on a nonsmooth surface,”
*Sb. Math.*,**190**, No. 1, 29–69 (1998).CrossRefMathSciNetGoogle Scholar - 6.O. A. Andronova and N. D. Kopachevsky, “Mixed and spectral problems with surface dissipation of energy,” in:
*Proc. of Ukrainian Sci. Conf. of Young Scientists and Students on Differential Equations and Applications*(in honor of Ya. B. Lopatinskii), Donetsk (Ukraine), December 6-7 (2006), pp. 12–13.Google Scholar - 7.O. Andronova and N. Kopachevsky, “Operator approach to dynamic systems with surface dissipation of energy,” in:
*Int. Conf. “Modern Analysis and Applications” dedicated to the centenary of Mark Krein*, Odessa, Ukraine, April 9-14 (2007), p. 11.Google Scholar - 8.N. K. Askerov, S. G. Krein, and G. I. Laptev, “Oscillations of a viscous liquid and the associated operational equations,”
*Funkts. Anal. Prilozh.*,**2**, No. 2, 21–31 (1968).MATHMathSciNetGoogle Scholar - 9.T. Ya. Azizov and I. S. Iokhvidov,
*Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric*[in Russian], Nauka, Moscow (1986).MATHGoogle Scholar - 10.T. Ya. Azizov and N. D. Kopachevsky, “On the basis property of the system of eigen- and associated elements of the S. G. Krein problem on normal oscillations of a viscous fluid in an open vessel,” in:
*Spectral and Evolutionary Problems*,**3**(1994), pp. 38–39.Google Scholar - 11.V. V. Barkovskii, “A decomposition by eigenfunctions and eigenvectors related to general elliptic problems with an eigenvalue in the boundary condition,”
*Ukr. Mat. Zh.*,**19**, No. 1, (1967).Google Scholar - 12.B. V. Bazalii and S. P. Degtyarev, “On the Stefan problem with kinetic and classical conditions at a free boundary,”
*Ukr. Mat. Zh.*,**44**, No. 2, 155–166 (1992).CrossRefMathSciNetGoogle Scholar - 13.J. Below and G. François, “Spectral asymptotics for the Laplacian under an eigenvalue-dependent boundary condition,”
*Bull. Belgian Math. Soc. Simon Stevin*,**12**, No. 4, 505–519 (2005).MATHGoogle Scholar - 14.I. Chueshov,
*Introduction to the Theory of Infinite-Dimensional Dissipative Systems*[in Russian], Ada, Krakov (1999).MATHGoogle Scholar - 15.I. Chueshov, M. Eller, and I. Lasiecka, “Finite dimension of the attractor for a semilinear wave equation with nonlinear boundary dissipation,”
*Commun. PDE*,**29**, No 1–12, 1847-1876 (2004).MATHMathSciNetGoogle Scholar - 16.J. Ercolano and M. Schechter, “Spectral theory for operators generated by elliptic boundary-value problems with eigenvalue parameter in boundary conditions,”
*Commun. Pure Appl. Math.*,**18**, 83–105 (1965).CrossRefMathSciNetGoogle Scholar - 17.S. F. Feshchenko, I. A. Lukovskii, B. I. Rabinovich, and L. V. Dokuchaev,
*Methods of Determination of Adjoint Fluid Masses in Moving Domains*[in Russian], Naukova Dumka, Kiev, 216–224 (1969).Google Scholar - 18.E. Gagliardo, “Caratterizzazioni delle trace sulla frontiera relative ad alaine classi di funzioni in
*n*variabili,”*Rend. Semin. Mat. Univ. Padova*,**27**, 284–305 (1957).MATHMathSciNetGoogle Scholar - 19.I. C. Gokhberg and M. G. Krein,
*Introduction to the Theory of Linear Non-Self-Adjoint Operators*, Transl. Math. Monogr.,**18**, Amer. Math. Soc., Providence, Rhode Island (1969).Google Scholar - 20.V. I. Gorbachuk and M. L. Gorbachuk,
*Boundary-Value Problems for Differential Operator Equations*[in Russian], Naukova Dumka, Kiev (1984).MATHGoogle Scholar - 21.V. A. Grinshtein and N. D. Kopachevsky,
*On the Spectra of Bounded Self-Adjoint Operators*[in Russian], preprint (1989).Google Scholar - 22.V. A. Grinshtein and N. D Kopachevsky, “On the
*p*-basicity of a system of eigenelements of a selfadjoint operator-valued function,”*Proc. XV All-Union School on Operator Theory in Functional Spaces, Ul’yanovsk, September*5–12, 1990,**1**, (1990), p. 12.Google Scholar - 23.N. D. Kopachevsky, “On the basis properties of a system of eigenvectors and associated vectors of a self-adjoint operator sheaf
*I − λA − λ*^{−1}*B*,”*Funkts. Anal. Prilozh.*,**15**, No. 2, 77–78 (1981).CrossRefGoogle Scholar - 24.N. D. Kopachevsky, “On the
*p*-basis property of the system of root vectors of a self-adjoint operator pensil*I − λA − λ*^{−1}*B*,” in:*Functional Analysis and Applied Mathematics*[in Russian], Naukova Dumka, Kiev (1982), pp. 43–55.Google Scholar - 25.N. D. Kopachevsky, “On the abstract Green formula for a triplet of Hilbert spaces and its application to the Stokes problem,”
*Taurida Bull. Inform. Math.*, No. 2, 52–80 (2004).Google Scholar - 26.N. D. Kopachevsky, “On abstract boundary value problems with surface dissipation of energy,” in:
*Proc. Int. Conf. “Analysis and Partial Differential Equations”*(in honor of Prof. B. Bojarsky), Bedlevo, Poland, June 18–24, (2006), p. 23.Google Scholar - 27.N. D. Kopachevsky, “The abstract Green formula for mixed boundary-value problems,”
*Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern.*,**20(59)**, No. 2, 3–12 (2007).Google Scholar - 28.N. D. Kopachevsky and S. G. Krein,
*Operator Approach to Linear Problems of Hydrodynamics. Vol.*1*. Self-Adjoint Problems for Ideal Fluids*, Birkhäuser, Basel–Boston–Berlin (2001).Google Scholar - 29.N. D. Kopachevsky and S. G. Krein,
*Operator Approach to Linear Problems of Hydrodynamics. Vol.*2*. Non-Self-Adjoint Problems for Viscous Fluids*. Birkhäuser, Basel–Boston–Berlin (2003).Google Scholar - 30.N. D. Kopachevsky and S. G. Krein, “The abstract Green formula for a triplet of Hilbert spaces, abstract initial-value and spectral problem,”
*Ukr. Math. Vist.*,**1**, No. 1, 69–97 (2004).Google Scholar - 31.N. D. Kopachevsky, S. G. Krein, and N. Z. Kan,
*Operator Methods in Linear Hydrodynamics. Evolutionary and Spectral Problems*[in Russian], Nauka, Moscow (1989).Google Scholar - 32.N. D. Kopachevsky and O. I. Nemirskaya,
*On the p-Basis Property of the System of Eigenlements of Self-Adjoint Operator-Valued Functions*[in Russian], preprint, Simferopol Univ. (1992).Google Scholar - 33.N. D. Kopachevsky and P. A. Starkov, “Operator approach to transmission problems for Helmholtz equation,” in:
*Ukr. Congr. Math., Nonlinear PDEs*, Kyiv, August 22–28 (2001), p. 68.Google Scholar - 34.N. D. Kopachevsky and P. A. Starkov, “Abstract Green’s formula and transmission problems,” in:
*Int. Conf. on Functional Analysis and Its Applications dedicated to the 110th anniversary of S. Banach*, Lviv, Ukraine, May 28–31 (2002), pp. 112–113.Google Scholar - 35.N. D. Kopachevsky, P. A. Starkov, and V. I. Voytitsky, “Abstract Green’s formula and spectral transmission problems,”
*Int. Conf. Nonlinear PDEs*, Yalta, Crimea, Ukraine, September 10–15 (2007), pp. 40–41.Google Scholar - 36.N. D. Kopachevsky and V. I. Voytitsky, “On the modified spectral Stefan problem and its abstract generalizations,” in:
*Operator Theory: Advances and Applications*,**191**, Birkhäuser, Basel (2009), pp. 373–386.Google Scholar - 37.S. G. Krein (ed.),
*Functional Analysis*[in Russian], Nauka, Moscow (1972).Google Scholar - 38.S. G. Krein, “On oscillations of a viscous fluid in a vessel,”
*Dokl. Akad. Nauk SSSR***159**, No. 2, 262–265 (1964).MathSciNetGoogle Scholar - 39.S. G. Krein and G. I. Laptev, “Motion of a viscous liquid in an open vessel,”
*Funkts. Anal. Prilozh.*,**2**, No. 1, 40–50 (1968).MATHMathSciNetGoogle Scholar - 40.V. E. Liantse and O. G. Storozh,
*Methods of the Theory of Nonbounded Operators*[in Russian], Naukova Dumka, Kiev (1983).Google Scholar - 41.J.-L. Lions and E. Magenes,
*Non-Homogeneous Boundary-Value Problems and Applications*, Springer-Verlag, Berlin–New York (1972).Google Scholar - 42.A. S. Markus,
*Introduction to the Spectral Theory of Polynomial Operator Sheaves*[in Russian], Shtiintsa, Kishinev (1986).Google Scholar - 43.A. S. Marcus and V. I. Matsaev, “On the basis property for a certain part of the eigenvectors and associated vectors of the self-adjoint operator sheaf,”
*Math. USSR Sb.*,**61**, No. 2, 289–307 (1988).CrossRefMathSciNetGoogle Scholar - 44.A. S. Marcus and V. I. Matsaev, “Comparison theorems for spectra of linear operators and spectral asymptotics,”
*Tr. Mosk. Mat. Obshch.*,**45**, 133–181 (1982).Google Scholar - 45.A. S. Marcus and V. I. Matsaev, “A theorem on comparison of spectra and the spectral asymptotics for Keldysh sheaves,”
*Math. USSR. Sb.*,**61**, No. 2, 289–307 (1988).CrossRefMathSciNetGoogle Scholar - 46.J.-P. Oben, “Approximate solution of elliptic boundary-value problems,”
*Sov. Math. Dokl.*,**38**, No. 2, 327–331 (1989).Google Scholar - 47.B. V. Pal’tzev, “On a mixed problem with a nonuniform boundary conditions for second-ordered elliptic equations with a parameter in Lipschitz domains,”
*Math. Sb.*,**187**, No. 4, 59–116 (1996).Google Scholar - 48.E. V. Radkevich, “On conditions for the existence of classical solutions of the modified Stefan problem (the Gibbs–Thompson law),”
*Math. USSR Sb.*,**75**, No. 1, 221–246 (1993).MathSciNetGoogle Scholar - 49.V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains,”
*J. London Math. Soc.*,**60**, 237–257 (1999).CrossRefMathSciNetGoogle Scholar - 50.R. Showalter, “Hilbert space methods for partial differential equations,”
*Electron. J. Differ. Eqs.*(1994).Google Scholar - 51.V. I. Smirnov,
*A Course in Higher Mathematics. Part V*, H. Deutsch, Frankfurt-am-Main (1991).Google Scholar - 52.P. A. Starkov, “An operator approach to conjugation problems,”
*Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern.*,**15 (54)**, No. 1, 58–62 (2002).MathSciNetGoogle Scholar - 53.P. A. Starkov, “A case of a general position for an operator sheaf arising in studying of conjugation problems,”
*Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern.*,**15 (54)**, No. 2, 82–88 (2002).Google Scholar - 54.P. A. Starkov, “The study of conjugation problems for exceptional values of a fixed parameter,”
*Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern.*,**16 (55)**, No. 2, 81–89 (2003).Google Scholar - 55.P. A. Starkov, “On the basis property of a system of eigenelements in conjugation problems,”
*Taurida Bull. Inform. Math.*,**1**, 118–131 (2003).Google Scholar - 56.P. A. Starkov, “Examples of multicomponent conjugation problems,”
*Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern.*,**18 (57)**, No. 1, 89–94 (2005).MathSciNetGoogle Scholar - 57.L. R. Volevich and S. G. Gindikin,
*Generalized Functions and Convolution Equations*[in Russian], Nauka, Moscow (1994).Google Scholar - 58.V. I. Voytitsky, “Abstract spectral Stefan problem,”
*Uch. Zap. Taurida Natl. Univ. Ser. Mat. Mekh. Inform. Kibern.*,**19 (58)**, No. 2, 20–28 (2006).Google Scholar - 59.V. I. Voytitsky, “On spectral problems generated by the Stefan problem with the Gibbs–Thompson conditions,”
*Nonlin. Boundary-Value Problems*,**17**, 31–49 (2007).MATHGoogle Scholar

## Copyright information

© Springer Science+Business Media, Inc. 2010