Advertisement

Journal of Mathematical Sciences

, Volume 169, Issue 3, pp 315–341 | Cite as

Some aspects of the theory of manifolds over algebras and Weil bundles

  • V. V. Shurygin
Article

Keywords

Manifold Smooth Manifold Bundle Functor Foliated Manifold Weil Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. N. Apanasov, Geometry of Discrete Groups and Manifolds [in Russian], Nauka, Moscow (1991).MATHGoogle Scholar
  2. 2.
    W. Blaschke, Differential Geometry [Russian translation], ONTI-NKTP, Moscow–Leningrad (1935).Google Scholar
  3. 3.
    F. Brickell and R. S. Clark, “Integrable almost tangent structures, J. Diff. Geom., 9, No. 4, 557–563 (1974).MATHMathSciNetGoogle Scholar
  4. 4.
    G. N. Bushueva, “Weil functors and product-preserving functors on the category of parameterdependent manifolds,” Izv. Vuzov, Mat., No. 5, 14–21 (2005).Google Scholar
  5. 5.
    G. N. Bushueva and V. V. Shurygin, “On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds,” Lobachevskii J. Math., 18, 53–105 (2005).MATHMathSciNetGoogle Scholar
  6. 6.
    M. Crampin and G. Thompson, “Affine bundles and integrable almost tangent structures,” Math. Proc. Cambridge Phil. Soc., 98, 61–71 (1985).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Doupovec, “Iteration of fiber product preserving bundle functors,” Monatsh. Math., 134, 39–50 (2001).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Doupovec and I. Kolář “Natural affinors on time-dependent Weil bundles,” Archiv. Math., 27b, 205–209 (1991).Google Scholar
  9. 9.
    T. V. Duc, “Structures presque-transverse,” J. Diff. Geom., 14, No. 2, 215–219 (1979).MATHGoogle Scholar
  10. 10.
    D. J. Eck, “Product-preserving functors on smooth manifolds,” J. Pure Appl. Algebra, 42, 133–140 (1986).CrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Ehresmann, “ Les prolongements d’une variété différentiable. II. L’espace des jets d’ordre r de Vn dans Vm,” C. R. Acad. Sci., 233, No. 15, 777–779 (1951).MathSciNetGoogle Scholar
  12. 12.
    C. Ehresmann, “Sur les connexions d’ordre sup´erior,” In: Atti del V Congresso dell’Unione Math., Italiana, Roma (1955, pp. 326–328.Google Scholar
  13. 13.
    L. E. Evtushik, “Differential connections and infinitesimal transformations of prolonged pseudogroups,” In: Proceedings of a Geometric Workshop [in Russian], 2, All-Union Institute for Scientific and Technical Information, Moscow (1966), pp. 119–150.Google Scholar
  14. 14.
    L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, “Differential-geomeric structures on manifolds,” In: Progress in Science and Technology, Series on Problems in Geometry [in Russian], 9, All-Union Institute for Scientific and Technical Informaton, USSR Academy of Sciences, Moscow (1979), pp. 3–247.Google Scholar
  15. 15.
    J. Gancarzewicz, W. Mikulski, and Z. Pogoda, “Lifts of some tensor fields and connections to product preserving functors,” Nagoya Math. J., 135, 1–41 (1994).MATHMathSciNetGoogle Scholar
  16. 16.
    J. Gancarzewicz, N. Rahmani, and M. Salgado, “Connections of higher order and product preserving functors,” Czech. Math. J., 52, 889–896 (2002).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    W. Goldman andM.W. Hirsch, “The radiance obstruction and parallel forms on affine manifolds,” Trans. Amer. Math. Soc., 26, No. 2, 629–649 (1984).MathSciNetGoogle Scholar
  18. 18.
    G. Kainz and P. Michor, “Natural transformations in differential geometry,” Czech. Math. J., 37, 584–607 (1987).MathSciNetGoogle Scholar
  19. 19.
    F. W. Kamber and P. Tondeur, “Fiber bundles and characteristic classes,” Lect. Notes Math., 493, Springer (1975).Google Scholar
  20. 20.
    S. Kobayashi and K.Nomizu, Foundations of Differential Geometry [Russian translation], Vol. I, Nauka, Moscow (1981).Google Scholar
  21. 21.
    I. Kolář, “On the geometry of fiber product preserving bundle functors,” In Differential Geometry and Its Applications, Roc. Conf., Opava (Czech Republic), August 27–31, 2001, Silesian University, Opava (2001), pp. 85–92.Google Scholar
  22. 22.
    I. Kolář, P. W. Michor, and J. Slov´ak, Natural Operations in Differential Geometry, Springer (1993).Google Scholar
  23. 23.
    I. Kolář and W. M. Mikulski, “On the fiber product preserving bundle functors,” Differ. Geom. Appl., 11, 105–115 (1999).MATHCrossRefGoogle Scholar
  24. 24.
    A. P. Kotel’nikov, Screw Calculus and Its Applications to Geometry and Mechanics [in Russian], Kazan’ (1895).Google Scholar
  25. 25.
    A. Kriegl and P. W. Michor, “Product preserving functors of infinite dimensional manifolds,” Archiv. Math., 32, 289–30 (1996).MATHMathSciNetGoogle Scholar
  26. 26.
    G. I. Kruchkovich, “Hypercomplex structures on manifolds. I,” Tr. Sem. Vekt. Tenz. Anal., No. 16, 174–201 (1972).Google Scholar
  27. 27.
    G. I. Kruchkovich, “Hypercomplex structures on manifolds. II,” Tr. Sem. Vekt. Tenz. Anal., No. 17, 218–227 (1974).Google Scholar
  28. 28.
    G. F. Laptev, “Main infinitesimal higher-order structures on a smooth manifold,” In: Proccedings of a Geometric Workshop [in Russian], 1, All-Union Institute for Scientific and Technical Information, Moscow (1966), pp. 139–189.Google Scholar
  29. 29.
    S. Lang, Algebra [Russian translation], Mir, Moscow (1968).MATHGoogle Scholar
  30. 30.
    M. de León, I. Méndes, and M. Salgado, “Integrable p-almost tangent manifolds and tangent bundles of p 1-velocities,” Acta Math. Hung., 58, Nos. 1-2, 45–54 (1991).MATHCrossRefGoogle Scholar
  31. 31.
    M. de León and C. Marreto, “Constrained time-dependent Lagrangian systems and Lagrangian submanifolds,” J. Math. Phys., 34, 622–645 (1993).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    P. Liberman, “Calcul tensoriel et connexions d’ordre supérieur,” An. Acad. Brasil. Ciênc., 37, No. 1, 17–29 (1965).Google Scholar
  33. 33.
    O. O. Luciano, “Categories of multiplicative functors and Weil’s infinitely near points,” Nagoya Math. J., 109, 67–108 (1988).MathSciNetGoogle Scholar
  34. 34.
    M. A. Malakhal’tsev, “Manifold structures over dual-number algebras on a torus,” In: Proceedings of a Geometric Workshop [in Russian], No. 22. Kazan’ University, Kazan’ (1994), pp. 47–62.Google Scholar
  35. 35.
    M. A. Malakhal’tsev, “Foliations with leaf structures,” In: Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Thematical Surveys [in Russian], 73, All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, Moscow (2002), pp. 65–102.Google Scholar
  36. 36.
    P. Malino, Riemannian Foliations, Birkhäuser (1988).Google Scholar
  37. 37.
    W. M. Mikulski, “Product preserving bundle functors on fibered manifolds,” Archiv. Math., 32, 307–316 (1996).MATHMathSciNetGoogle Scholar
  38. 38.
    A. Morimoto, “Prolongation of connections to bundles of infinitely near points,” J. Diff. Geom., 11, No. 4, 479–498 (1976).MATHMathSciNetGoogle Scholar
  39. 39.
    A. P. Norden, “On parallel translation of dual vectors,” Uch. Zap. Kazan. Univ., 110, No. 3, 95–103 (1950).Google Scholar
  40. 40.
    A. P. Norden, “On complex representation of tensors of biplanar space,” Uch. Zap. Kazan. Univ., 114, No. 8, 45–53 (1954).MathSciNetGoogle Scholar
  41. 41.
    A. P. Norden, “On the connection structure on line manifolds of non-Euclidean space,” Izv. Vuzov, Mat., No. 12, 84–94 (1972).Google Scholar
  42. 42.
    M. Rañada, “Time-dependent Lagrangian systems: A geometric approach to the theory of systems with constraints,” J. Math. Phys., 35, 748–767 (1994).MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    P. K. Rashevskii, “Scalar field in fiber space,” Trudy Sem. Vekt. Tenz. Anal., No. 6, 225–248 (1948).Google Scholar
  44. 44.
    B. L. Reinhart, Differential Geometry of Foliations. The Fundamental Integrability Problem, Springer (1983).Google Scholar
  45. 45.
    G. Scheffers, “Verallgemeinerung der Grundlagen der gewöhnlichen komplexen Funktionen,” Berichte Sächs. Akad. Wiss., 45, 828–842 (1893).Google Scholar
  46. 46.
    L. B. Smolyakova, “Structure of complete radiant manifolds modeled by modules over Weil algebras,” Izv. Vuzov, Mat., No. 5, 76–83 (2004).Google Scholar
  47. 47.
    L. B. Smolyakova and V. V. Shurygin, “Lifts of geometric objects to the Weil bundle T μ M of a foliated manifold defined by a Weil algebra epimorphism μ,” Izv. Vuzov, Mat., No. 10, 76–89 (2007).Google Scholar
  48. 48.
    A. Ya. Sultanov, “Prolongations of tensor fields and connections to Weil bundles,” Izv. Vuzov, Mat., No. 9, 81–90 (1999).Google Scholar
  49. 49.
    A. P. Shirokov, “On a certain type of G-structures defined by algebras,” In: Proceedings of a Geometric Workshop [in Russian], 1, All-Union Institute for Scientific and Technical Information, Moscow (1966), pp. 425–456.Google Scholar
  50. 50.
    A. P. Shirokov, “A note on structures in tangent bundles,” In: Proceedings of a Geometric Workshop [in Russian], 5, All-Union Institute for Scientific and Technical Information, Moscow (1974), pp. 311–318.Google Scholar
  51. 51.
    A. P. Shirokov, “Geometry of tangent bundles and spaces over algebras,” In: Progress in Science and Technology, Series on Problems in Geometry [In Russian], 12, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1981), pp. 61-95.Google Scholar
  52. 52.
    A. P. Shirokov, “Spaces over algebras and their applications,” In: Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Thematical Surveys, 73, All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, Moscow (2002), pp. 135–161.Google Scholar
  53. 53.
    P. A. Shirokov, “Constant fields of vectors and second-order tensors in Riemannian spaces,” Izv. Kazan. Fiz.-Mat. Obshch., Ser. 2, 25, 48–55 (1925).Google Scholar
  54. 54.
    V. V. Shurygin, “Jet bundles as manifolds over algebras,” In: Progress in Science and Technology, Series on Problems in Geometry [in Russian], 19, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1987), pp. 3–22.Google Scholar
  55. 55.
    V. V. Shurygin, “Application of the theory of manifolds over algebras in transversal foliation geometry,” In: Devoted to the Memory of Lobachevskii [in Russian], No. 2, Kazan’ University, Kazan’ (1992), pp. 119–140.Google Scholar
  56. 56.
    V. V. Shurygin, “Higher-order connections and lifts of geometric object fields,” Izv. Vuzov, Mat. No. 5, 96–104 (1992).Google Scholar
  57. 57.
    V. V. Shurygin, “Manifolds over algebras equivalent to jet bundles,” Izv. Vuzov, Mat., No. 10, 68–79 (1992).Google Scholar
  58. 58.
    V. V. Shurygin, “Manifolds over algebras and their applications in jet-bundle geometry,” Usp. Mat. Nauk, 48, No. 2 (290), 75–106(1993).MathSciNetGoogle Scholar
  59. 59.
    V. V. Shurygin, “Smooth manifolds over local algebras and Weil bundles,” In: Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Thematical Surveys [in Russian], 73, All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, Moscow (2002), pp. 162–236.Google Scholar
  60. 60.
    V. V. Shurygin, “On the structure of complete manifolds over Weil algebras,” Izv. Vuzov, Mat., No. 11, 88–97 (2003).Google Scholar
  61. 61.
    V. V. Shurygin, “Obstructions to radiance for smooth manifolds over Weil algebras,” Izv. Vuzov, Mat., No. 5, 71–83 (2005).Google Scholar
  62. 62.
    V. V. Shurygin, “Structure of smooth mappings over Weil algebras and the category of manifolds over algebras,” Lobachevskii J. Math., 5, 29–55 (1999).MATHMathSciNetGoogle Scholar
  63. 63.
    V. V. Shurygin and L. B. Smolyakova, “An analog of the Vaisman–Molino cohomology for manifolds modelled on some types of modules over Weil algebras and its application,” Lobachevskii J. Math., 9, 55–75 (2001).MATHMathSciNetGoogle Scholar
  64. 64.
    E. Study, Geometrie der Dymamen, Leipzig (1902).Google Scholar
  65. 65.
    G. Thompson and U. Schwardmann, “Almost tangent and cotangent structures in the large,” Trans. Amer. Math. Soc., 327, No. 1, 313–327 (1991).MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    W. P. Thurston, Three-Dimentional Geometry and Topology, Vol. 1, Princeton Univ. Press, Princeton (1997).Google Scholar
  67. 67.
    J. V. Tomáš, “Natural operators transforming projectable vector fields to product preserving bundles,” Rendiconti Circ. Mat. Palermo, Ser. II, Suppl., 59, 181–187 (1999).Google Scholar
  68. 68.
    V. V. Vagner, “Theory of differential objects and foundations of differential geometry,” Supplement to O. Veblen and J. Whitehead, Foundations of Differential Geometry [Russian translation], IL, Moscow (1949), pp. 135–223.Google Scholar
  69. 69.
    V. V. Vagner, “Algebraic theory of differential groups,” Dokl. Akad. Nauk SSSR, 80, No. 6, 845–848 (1951).MATHMathSciNetGoogle Scholar
  70. 70.
    V. V. Vagner, “Algebraic theory of higher-order tangent spaces,” Trudy Sem. Vekt. Tenz. Anal., No. 10, 31–88 (1956).Google Scholar
  71. 71.
    I. Vaisman, “d f-Cohomology of Lagrangian foliations,” Monatsh. Math., 106, No. 3, 221–244 (1988).MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    I. Vaisman, “Lagrange geometry on tangent manifolds,” Int. J. Math. Math. Sci., 51, 3241–3266.Google Scholar
  73. 73.
    V. V. Vishnevskii, “Integrable affinor structures and their plural interpretations,” In: Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Thematical Surveys [in Russian], 73, All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, Moscow (2002), pp. 5–64.Google Scholar
  74. 74.
    V. V. Vishnevskii and T. A. Panteleeva, “Holomorphic prolongations of objects to second-order semitangent bundles,” Izv. Vuzov, Mat., No. 9, 3–10 (1985).Google Scholar
  75. 75.
    V. V. Vishnevskii, A. P. Shirokov, and V. V. Shurygin, Spaces over Algebras [in Russian], Kazan’ University, Kazan’ (1984).Google Scholar
  76. 76.
    A. Vondra, “Sprays and homogeneous connections on R × TM,” Archiv. Math., 28, 163–173 (1992).MATHMathSciNetGoogle Scholar
  77. 77.
    A. Weil, “Théorie des points proches sur les variététes différentiables,” Colloque Internat. Centre Nat. Rech. Sci., 52, 111–117 (1953).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Kazan’ State UniversityKazan’Russia

Personalised recommendations