Advertisement

Journal of Mathematical Sciences

, Volume 169, Issue 3, pp 297–314 | Cite as

Infinitesimal automorphisms of metric structures of Finsler type

  • V. I. Pan’zhenskii
Article

Keywords

Tangent Bundle Symplectic Structure Riemannian Space Motion Group Finsler Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Dan’shin, “Formalism of nonholomic frames in Finsler geometry,” In: Newest Problems in Field Theory. 2001–2002 [in Russian], Kazan’ (2002), pp. 161–174.Google Scholar
  2. 2.
    I. P. Egorov, “Motions and homotheties in Finsler spaces and their generalizations,” In: Progress in Science and Technology, Series on Problems of Geometry [in Russian], Vol. 16, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1984), pp. 81–126.Google Scholar
  3. 3.
    R. Kh. Ibragimova, “Motions on tangent bundles preserving orthogonal and tangent structures,” Izv. Vuzov. Mat., No. 8, 29–34 (1996).Google Scholar
  4. 4.
    V. I. Noskov, “Relativistic variant of Finsler geometry and some of its physical consequences in the embedding space model,” In: Newest Problems in Field Theory. 2001–2002 [in Russian], Kazan’ (2002), pp. 328–336.Google Scholar
  5. 5.
    V. I. Pan’zhenskii, “On isometry groups of linear element metric spaces,” Deposited at VINITI, No. 1939–81.Google Scholar
  6. 6.
    V. I. Pan’zhenskii, “On theWang theorem for linear element metric spaces,” Deposited at VINITI, No. 2413–82Google Scholar
  7. 7.
    V. I. Pan’zhenskii, “On the linear element space of a nonpotential metric with isometry group of maximal dimension,” In: Problems of Differential Geometry in the Large [in Russian], Leningrad State Pedagogical Institute, Leningrad (1983), pp. 91–95.Google Scholar
  8. 8.
    V. I. Pan’zhenskii, “Some problems of the geometry of linear element metric spaces,” Deposited at VINITI, No. 8179-84Google Scholar
  9. 9.
    V. I. Pan’zhenskii, “Study of locally conical manifolds via osculating Riemannian metrics,” In: Geometry of Immersed Manifolds [in Russian], Moscow State Pedagogical Institute, Moscow (1986), pp. 65–70.Google Scholar
  10. 10.
    V. I. Pan’zhenskii, “On the geometry of movable linear element metric spaces,” In: Studies in the Theory of Riemannian Manifolds and Their Immersions [in Russian], Leningrad State Pedagogical Institute, Leningrad (1986), pp. 81–87.Google Scholar
  11. 11.
    V. I. Pan’zhenskii, “On motions in a tangent bundle with Sasakian metric,” Deposited at VINITI, No. 1194-V89.Google Scholar
  12. 12.
    V. I. Pan’zhenskii, “On complete lift metrics in tangent bundles of a locally conical space,” Deposited at VINITI, No. 454-V90.Google Scholar
  13. 13.
    V. I. Pan’zhenskii, “On the geometry of a tangent bundle of a locally conical space,” Izv. Vuzov. Mat., No. 10, 71–74 (1990).Google Scholar
  14. 14.
    V. I. Pan’zhenskii, “Connections in generalized Finsler space,” In: Geometry of Generalized Spaces [in Russian], Penza State Pedagogical University, Penza (1992), pp. 68–71.Google Scholar
  15. 15.
    V. I. Pan’zhenskii, “Motions in tangent bundle of generalized Finsler space,” In: Geometry in Odessa, 2004/Abstracts of Reports of the Scientific Conference ONU [in Russian], Odessa (2004), pp. 64–65.Google Scholar
  16. 16.
    V. I. Pan’zhenskii, “On infinitesimal automorphisms of almost symplectic structures,” Uch. Zap. Kazan. Gos. Univ, 147, Book 1, 148–153 (2005).Google Scholar
  17. 17.
    V. I. Pan’zhenskii, “Infinitesimal automorphisms of almost symplectic structures with canonical torsion,” In: Proceedings of the G. F. Laptev International Geometric Workshop [in Russian], Penza State Pedagogical University, Penza (2007), pp. 80–84.Google Scholar
  18. 18.
    V. I. Pan’zhenskii, “On the geometry of generalized Finsler space with special metric,” Izv. Vuzov. Mat., No. 2, 30–34 (1996).Google Scholar
  19. 19.
    V. I. Pan’zhenskii, “Finsler-type spaces close to Riemannian spaces,” In: Proceedings of a Geometric Workshop [in Russian], No. 24, Kazan’ State University, Kazan’ (2003), pp. 121–129.Google Scholar
  20. 20.
    V. I. Pan’zhenskii, “On the geometry of spaces with Tamm metric,” In: Laptev Readings, Proceedings of the G. F. Laptev International Geometric Workshop, January 26-31, 2004 [in Russian], Penza State Pedagogical University, Penza (2004), pp. 93–99.Google Scholar
  21. 21.
    V. I. Pan’zhenskii, “Motions in Kawaguchi spaces with special metric,” Izv. Vuzov. Mat., No. 12, 77–82 (2007).Google Scholar
  22. 22.
    H. Rund, The Differential Geometry of Finsler Spaces [Russian translation], Nauka, Moscow (1981).MATHGoogle Scholar
  23. 23.
    M. V. Sorokina, “On infinitesimal automorphisms of almost symplectic structure on tangent bundles of generalized Lagrange space,” Uch. Zap. Kazan. Gos. Univ., 147, Book 1, 154–158 (2005).Google Scholar
  24. 24.
    M. V. Sorokina, “On infinitesimal automorphisms of almost Hermitian structure on tangent bundles of a smooth manifold,” In: Motions in Generalized Spaces [in Russian], Penza State Pedagogical University, Penza (2005), pp. 105–111.Google Scholar
  25. 25.
    O. P. Surina, “Generalized Finsler spaces admitting motion groups of maximal dimension,” Deposited at VINITI, No. 788-V99.Google Scholar
  26. 26.
    O. P. Surina, “On motions in spaces with metric g ij(x, y) = e 2σ(x,y) γ ij(x),” In: Intercollege Collection of Scientific Works [in Russian] (1992), pp. 96–100.Google Scholar
  27. 27.
    G. S. Asanov, “A post-Newtonian estimation for the metric γ ij(x)+αc 2 y i y j,” Tensor, 49, No. 1, 99–102 (1990).MATHMathSciNetGoogle Scholar
  28. 28.
    G. S. Asanov, “Anomalously-Finslerian corrections to the speed of light given by the metric g ij(x, x˙) = γ ij(x) + βl i l j,” Tensor, 50, No. 2, 170–176 (1991).MATHMathSciNetGoogle Scholar
  29. 29.
    V. Balan, “Generalized Einstein–Yang–Mills equations for the space GLn(M,g ij) in the case of g ij(x, y) = e 2σ(x,y)γ ij(x), Tensor, 52, No. 3, 19–23 (1993).Google Scholar
  30. 30.
    D. Bao, “Finsler geometry,” Amer. Math. Soc., Series of Contemporary Mathematics, 179 (1995).Google Scholar
  31. 31.
    S. Ikeda, “On the Finslerian metrical structures of the gravitational field,” An. Sti. Univ. Iasi. Sec. 1a, 30, No. 4, 35–38 (1984).MATHGoogle Scholar
  32. 32.
    S. Ikeda, “Theory of fields in Finsler spaces,” Semin. Mec. Univ. Timisoara., 8, 1–43 (1988).Google Scholar
  33. 33.
    S. Ikeda, “Theory of gravitational fields in Finsler spaces,” Tensor, 50, No. 3, 256–262 (1991).MATHMathSciNetGoogle Scholar
  34. 34.
    T. Kawaguchi, “On the generalized Lagrange spaces with the metric γ ij(x)+(1/c 2)y i y j,” Tensor, 48, 52–63 (1989).MATHMathSciNetGoogle Scholar
  35. 35.
    M. S. Knebelman, “Collineations and motions in generalized space,” Am. J. Math., 51, 527–564 (1929).MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kais. Press, Otsu (1986).MATHGoogle Scholar
  37. 37.
    R. Miron, “On the Finslerian theory of relativity,” Tensor, 44, No. 1, 63–81 (1987).MATHMathSciNetGoogle Scholar
  38. 38.
    R. Miron, “Geometric theory of the gravitations and electronics fields in spaces with the metric e 2σ(x,y) γ ij(x),” Mem. Sec. Sti., Ser. 4, Acad. RSR, 15, No. 1, 9–23 (1992 (1994)).MathSciNetGoogle Scholar
  39. 39.
    A. Moor, “Entwicklung einer geometrie der allgemeiner metrischen linienelement raume,” Acta Sci. Math., 17, Nos. 1–2, 85–120 (1956).MATHMathSciNetGoogle Scholar
  40. 40.
    I. Tasiro, “A theory of transformation groups on generalized spaces and applications to Finsler and Cartan spaces,” J. Math. Soc. Jpn., 11, No. 11, 42–71 (1959).CrossRefGoogle Scholar
  41. 41.
    H. S. Wang, “On Finsler spaces with completely integrable equations of Killing,” J. London Math. Soc., 22, 5–9 (1947).MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    S. Watanabe, “On metrical Finsler connections of the generalized Finsler metric g ij = e 2σ(x,y)γ ij(x),” Tensor, 40, 97–102 (1983).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Penza State Pedagogical UniversityPenzaRussia

Personalised recommendations