Journal of Mathematical Sciences

, Volume 168, Issue 5, pp 699–717 | Cite as

Calculation of effective electrophysical characteristics of moistened porous materials

  • O. R. Hachkevych
  • R. F. Terlets’kyi
  • T. V. Holubets’

Features of homogenization of a porous region are considered. Using the spatial averaging method with the local representation of parameters of a field, we introduce effective electrophysical characteristics of a porous moistened medium and write the equations of electrodynamics. A generalized technique for calculating dielectric losses in porous bodies of low conductance with different moisture contents is proposed.


Porous Medium Dielectric Permittivity Representative Elementary Volume Spatial Average Electric Field Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. Y. Burak, A. I. Hachkevych, and R. F. Terlets’kyi, Thermomechanics of Multicomponent Bodies of Low Conductance [in Ukrainian], SPOLOM, Lviv (2006) (Ya. I. Burak and R. M. Kushnir (editors), Modeling and Optimization in Thermomechanics of Electroconductive Heterogeneous Bodies, Vol. 1).Google Scholar
  2. 2.
    A. N. Gubkin, Physics of Dielectrics. Theory of Dielectric Polarization in a Direct-Current and an Alternating-Current Field [in Russian], Vysshaya Shkola, Moscow (1971).Google Scholar
  3. 3.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York–Toronto–London (1968).Google Scholar
  4. 4.
    M. D. Mashkovich, Electric Properties of Inorganic Dielectrics in the Microwave Range [in Russian], Sovetskoe Radio, Moscow (1969).Google Scholar
  5. 5.
    C. J. F. Bottcher and P. Bordewijk, Theory of Electric Polarization, Vol. 2, Elsevier, Amsterdam (1978).Google Scholar
  6. 6.
    D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischköper aus isotropen Substanzen,” Ann. Phys. Leipzig, 24, 636–679 (1935).CrossRefGoogle Scholar
  7. 7.
    P. Debye, Polar Molecules, Dover Publications, New York (1945).Google Scholar
  8. 8.
    K. R. Foster and H. P. Schwan, “Dielectric properties of tissues and biological materials: a critical review,” Crit. Rev. Biomed. Eng., 91, 3072–3076 (1987).Google Scholar
  9. 9.
    D. Gawin, Modelowanie sprzęzonych zjawisk cieplno-wilgotnościowych w materiałach i elementach budowlanych, Zeszyty Naukowe Politechniki Łódzkiej Nr. 853, Rozprawy Naukowe Z.279, Wydawnystwo Politechniki Lodzkiej, Lodź (2000).Google Scholar
  10. 10.
    A. H. Howes and S. Whitaker, “The spatial averaging theorem revisited,” Chem. Eng. Sci., 23, No. 12, 1613–1623 (1980).Google Scholar
  11. 11.
    “IUPAC. Manual of symbols and terminology for physico-chemical quantities and units. Appendix II,” Pure Appl. Chem., 31, No. 4, 577–621 (1972).Google Scholar
  12. 12.
    J. C. Maxwell and B. A. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A., 203, 385–420 (1904).CrossRefGoogle Scholar
  13. 13.
    C. H. Scaman and T. D. Durance, “Combined microwave vacuum drying,” in: Da-Wen Sun (editor), Emerging Technologies in Food Processing, Elsevier, London (2005), pp. 527–534.Google Scholar
  14. 14.
    A. Sihlova, Electromagnetic Mixing Formulas and Applications, Institution of Electrical Engineers, London, (1999).Google Scholar
  15. 15.
    K. A. Smith and C. E. Mullins, Soil and Environmental Analysis: Physical Methods, Marcel Dekker, New York (2001).Google Scholar
  16. 16.
    P. A. M. Steeman and F. H. J. Maurer, “An interlayer model for the complex dielectric constant of composites,” Colloid Polym. Sci., 268, 315–325 (1990).CrossRefGoogle Scholar
  17. 17.
    T. Strzelecki, Mechanika ośrodkow niejednorodnych. Teorja homogenizacji, Dolnośl skie Wydawnyctwo Edukacyjne, Wrocaw (1996).Google Scholar
  18. 18.
    I. White and S. J. Zegelin, “Electric and dielectric methods for monitoring soil-water content,” in: L. G. Wilson, L. G. Everett, and S. J. Cullen (editors), Handbook of Vadose Zone Characterization and Monitoring, New York (1995), pp. 343–385.Google Scholar
  19. 19.
    J. Wyrwal, Thermodynamiczne podstawy fizyki budowli, Politechnika Opolska, Opole (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • O. R. Hachkevych
    • 1
  • R. F. Terlets’kyi
    • 1
  • T. V. Holubets’
    • 1
  1. 1.Pidstryhach Institute for Applied Problems of Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations