Advertisement

Journal of Mathematical Sciences

, Volume 164, Issue 3, pp 403–414 | Cite as

On solvability of boundary integral equations of potential theory for a multidimensional cusp domain

  • V. Maz’ya
  • S. Poborchi
Article

The Dirichlet and the Neumann problems for the Laplace equation on a multidimensional cusp domain are considered. The unique solvability of the boundary integral equation for the internal Dirichlet problem for harmonic double layer potential is established. We also prove the unique solvability of the boundary integral equation for the external Neumann problem for harmonic single layer potential. Bibliography: 13 titles.

Keywords

Dirichlet Problem Boundary Data Neumann Problem Boundary Integral Equation Lipschitz Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Maz’ya, “Boundary integral equations,” In: Encyclopaedia Math. Sci. 27, 127–233 (1991)MathSciNetGoogle Scholar
  2. 2.
    C. E. Kenig, Harmonic Analysis Technics for Second Order Elliptic Boundary Value Problems, Am. Math. Soc., Providence (1994).Google Scholar
  3. 3.
    V. G. Maz’ya, T. O. Shaposhnikova, “Higher regularity in the classical layer potential theory for Lipschitz domains,” Ind. Univ. Math. J. 54, No 1, 99–142 (2005).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. S. Jerison, C. E. Kenig, “The Neumann problem on Lipschitz domains,” Bull. Am. Math. Sos. 4, 203–207 (1981).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. P. Calderon, “Boundary value problems for the Laplace equation on Lipschitz domains,” In: Recent Progress in Fourier Analysis, pp. 33–48, Sci. Publ., Amsterdam (1985).Google Scholar
  6. 6.
    G. Verchota, “Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains,” J. Funct. Anal. 59, No. 3, 572–611 (1984).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    V. G. Maz’ya, A. A. Soloviev, “On an integral equation for the Dirichlet problem in a plane domain with cusps on the boundary” [in Russian], Mat. Sb. 180, No. 9, 1211–1233 (1989); English transl.: Math. USSR, Sb. 68, No.1, 61–83 (1990).MATHGoogle Scholar
  8. 8.
    V. G. Maz’ya, A. A. Soloviev, “On a boundary integral equation for the Neumann problem in a cusp domain” [in Russian], Trudy Leningr. Mat. O-va 1, 109–134 (1991); English transl.: Transl., Ser. 2, Am. Math. Soc. 155, 101–127 (1993).Google Scholar
  9. 9.
    V. G. Maz’ya, A. A. Soloviev, “Integral equations of logarithmic potential theory in Hölder spaces on contours with peaks” [in Russian], Algebra Anal. 10, No. 5, 85–142 (1998); English transl.: St. Petersbg. Math. J. 10, No. 5, 791–832 (1999).Google Scholar
  10. 10.
    V. G. Maz’ya, S. V. Poborchi, “Unique solvability of the integral equation for harmonic simple layer potential on the boundary of a domain with a peak” [in Russian], Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 2009, No. 2, 62–71 (2009); English transl.: Vestn. St. Petersb. Univ., Math. 42, No. 2, 120–129 (2009).Google Scholar
  11. 11.
    V. G. Maz’ya, S. V. Poborchi, “Representation of the solution to the Neumann problem for a cuspidal domain by the single layer potential,” [in Russian], Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 2009, No. 3, 41–49 (2009).Google Scholar
  12. 12.
    S. L. Sobolev, Partial Differential Equations of Mathematical Physics [in Russian], Nauka, Moscow (1966); English transl.: Pergamon Press Oxford etc. (1964).Google Scholar
  13. 13.
    V. G. Maz’ya, S. V. Poborchi, Imbedding and Extension Theorems for Functions on Non-Lipschitz Domains [in Russian], St. Petersburg State Univ. Press, St. Petersburg (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, M&O BuildingUniversity of LiverpoolLiverpoolUK
  2. 2.Department of MathematicsLinköping UniversityLinköpingSweden
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations