Homotopy types of group lattices

  • I. P. Kramarev
  • L. V. Lokutsievskiy


In this article, we study group lattices using the ideas of K. S. Brown and D. Quillen of associating a certain topological space to a partially ordered set. We determine the exact homotopy type for the subgroup lattice of PSL(2, 7), find a connection between different group lattices, and obtain some estimates for the Betti numbers of these lattices using the spectral sequence method.


Topological Space Conjugacy Class Spectral Sequence Simplicial Complex Maximal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Björner and J. W. Walker, “A homotopy complementation formula for partially ordered sets,” Eur. J. Combin., 4, 11–19 (1983).zbMATHGoogle Scholar
  2. 2.
    K. S. Brown, “The coset poset and probabilistic zeta function of a finite group,” J. Algebra, 225, No. 2, 989–1012 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. E. Dickson, Linear Groups with an Exposition of the Galois Theory, Dover, New York (1984).Google Scholar
  4. 4.
    A. T. Fomenko and D. B. Fucks, A Course in Homotopy Topology [in Russian], Nauka, Moscow (1989).Google Scholar
  5. 5.
    P. Hall, “The Eulerian functions of a group,” Quart. J. Math., 7, 134–151 (1936).CrossRefGoogle Scholar
  6. 6.
    C. Kratzer and J. Thevenaz, “Type d’homotopie des treillis et treillis des sous-groupes d’un groupe fini,” Comment. Math. Helv., 60, 85–106 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Quillen, “Homotopy properties of the poset of nontrivial p-subgroups of a group,” Adv. Math., 28, No. 2, 101–128 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. A. Ramras, “Connectivity of the coset poset and the subgroup poset of a group,” J. Group Theory, 8, 719–746 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Shareshian, Combinatorial Properties of Subgroup Lattices of Finite Groups, Ph.D. Thesis, Rutgers University (1996).Google Scholar
  10. 10.
    J. Shareshian, “On the shellability of the order complex of the subgroup lattice of a finite group,” Trans. Am. Math. Soc., 353, No. 7, 2689–2703 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Shareshian, “Topology of order complexes of intervals in subgroup lattices,” J. Algebra, 268, 677–686 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Suzuki, “On a class of doubly transitive groups,” Ann. Math., 75, 105–145 (1962).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations