Advertisement

Estimation of reliability using failure-degradation data with explanatory variables

  • V. Bagdonavičius
  • A. Bikelis
  • V. Kazakevičius
  • M. Nikulin
Article
  • 30 Downloads

We consider semiparametric estimation of characteristics of degradation and failure process using degradation and multi-mode failure time data with covariates under the assumption that the component of hazard rate related to observable degradation is an unknown function of degradation and may depend on covariates. Bibliography: 17 titles.

Keywords

Explanatory Variable Unknown Function Traumatic Event Time Data Hazard Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Bagdonavičius and M. Nikulin, Semiparametric Models in Accelerated Life Testing, Queen’s Papers in Pure and Applied Mathematics, 98, Queen’s Univ., Kingston, Canada (1999).Google Scholar
  2. 2.
    V. Bagdonavičius and M. Nikulin, “Estimation in degradation models with explanatory variables,” Lifetime Data Analysis, 7, 85–103 (2001).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    V. Bagdonavičius and M. Nikulin, Accelerated Life Models: Modeling and Statistical Analysis, Chapman & Hall/CRC, Boca Raton (2002).MATHGoogle Scholar
  4. 4.
    V. Bagdonavičius, A. Bikelis, V. Kazakevičius, and M. Nikulin, “Analysis of joint multiple failure mode and linear degradation data with renewals,” J. of Statistical Planning and Inference, 137, 2191–2207 (2007).MATHCrossRefGoogle Scholar
  5. 5.
    D. R. Cox, “Partial likelihood,” Biometrika, 62, 269–276 (1975).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Crowder, Classical Competing Risks, Chapman and Hall/CRC, Boca Raton (1975).Google Scholar
  7. 7.
    P. Greenwood and M. Nikulin, A Guide to Chi-squared Testing, J. Wiley and Sons, New York (1996).MATHGoogle Scholar
  8. 8.
    R. Henderson, P. Diggle, and A. Dobson, “Joint modeling of longitudinal measurements and event time data,” Biostatistics, 4, 465–480 (2000).CrossRefGoogle Scholar
  9. 9.
    J. Kalbfleisch and R. Prentice, The Statistical Analysis of Failure Time Data, 2nd ed., Wiley, New York (2002).MATHGoogle Scholar
  10. 10.
    N. Law, J. Taylor, and H. Sandler, “The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure,” Biostatistics, 3, 547–563 (2002).MATHCrossRefGoogle Scholar
  11. 11.
    A. Lehmann, “On degradation-failure models for repairable items,” in: M. Nikulin, N. Balakrishnan, M. Mesbah, and N. Limnios (eds), Parametric and Semiparametric Models with Applications to Reliability, Survival Analysis, and Quality of Life, Birkhäuser, Boston (2004), pp. 65–80.Google Scholar
  12. 12.
    W. Q. Meeker and L. Escobar, Statistical Analysis for Reliability Data. J. Wiley and Sons, New York (1998).Google Scholar
  13. 13.
    A. Tsiatis and M. Davidian, “Joint modeling of longitudinal and time-to-event data: an overview,” Statistica Sinica, 14, 809–834 (2004).MATHMathSciNetGoogle Scholar
  14. 14.
    A. Tsiatis, V. DeGruttola, and M. Wulfsohn, “Modeling the relationship of survival to longitudinal data measured with error applications to survival and CD4 counts in patients with AIDS,” J. Amer. Statist. Assoc., 90, 27–37 (1995).MATHCrossRefGoogle Scholar
  15. 15.
    V. G. Voinov and M. Nikulin, Unbiased Estimators and Their Applications, Vol. 1, Univariate Case, Kluwer, Dordrecht (1993).MATHGoogle Scholar
  16. 16.
    Y. Wang and J. Taylor, “Jointly modeling of longitudinal and event time data with applications to acquired immunodeficiency syndrome,” J. Amer. Statist. Assoc., 96, 895–905 (2001).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Wulfsohn and A. Tsiatis, “A joint model for survival and longitudinal data measured with error,” Biometrics, 53, 330–339 (1997).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • V. Bagdonavičius
    • 1
  • A. Bikelis
    • 1
  • V. Kazakevičius
    • 1
  • M. Nikulin
    • 2
  1. 1.Vilnius UniversityVilniusLithuania
  2. 2.IMB, University Victor SegalenBordeauxFrance

Personalised recommendations