Advertisement

Journal of Mathematical Sciences

, Volume 162, Issue 1, pp 1–5 | Cite as

YA. S. Pidstryhach—outstanding scientist and organizer of science

  • Ya. Yo. Burak
  • H. S. Kit
  • R. M. Kushnir
Article
  • 16 Downloads

Keywords

Naukova Dumka Ukrainian Academy Extended Phase Space Generalize Mathematical Model Shallow Spherical Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Ya. S. Pidstryhach, Selected Works [in Ukrainian], Naukova Dumka, Kiev (1995).Google Scholar
  2. 2.
    Ya. S. Pidstryhach and S. Ya. Yarema, Thermal Stresses in Shells [in Ukrainian], Academy of Sciences of Ukr. SSR, Kiev (1961).Google Scholar
  3. 3.
    Ya. S. Pidstryhach and Yu. M. Kolyano, Unsteady Temperature Fields and Stresses in Thin Plates [in Russian], Naukova Dumka, Kiev (1972).Google Scholar
  4. 4.
    Ya. S. Pidstryhach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  5. 5.
    Ya. S. Pidstryhach, Yu. M. Kolyano, V. I. Gromovyk, and V. L. Lozben’, Thermoelasticity of Bodies on Variable Heat-Transfer Coefficients [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  6. 6.
    Ya. S. Pidstryhach, Ya. Yo. Burak, A. R. Gachkevich, and L. V. Chernyavskaya, Thermoelasticity of Electrically Conducting Bodies [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  7. 7.
    Ya. S. Pidstryhach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  8. 8.
    E. I. Grigolyuk, Ya. S. Pidstryhach, and Ya. Yo. Burak, Optimization of Heating of Shells and Plates [in Russian], Naukova Dumka, Kiev (1979).MATHGoogle Scholar
  9. 9.
    Ya. S. Pidstryhach, Ya. Yo. Burak, V. I. Shelepets’ et al., Optimization and Control in Electrovacuum Production Plates [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  10. 10.
    Ya. S. Pidstryhach, Yu. M. Kolyano, and M. M. Semerak, Temperature Fields and Stresses in Elements of Electrovacuum Devices [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  11. 11.
    Ya. S. Pidstryhach, Ya. Yo. Burak, and V. F. Kondrat, Magnetothermoelasticity of Electrically Conducting Bodies [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  12. 12.
    Ya. S. Pidstryhach, V. A. Lomakin, and Yu. M. Kolyano, Thermoelasticity of Bodies with Inhomogeneous Structure [in Russian], Nauka, Moscow (1984).Google Scholar
  13. 13.
    Ya. S. Pidstryhach and Yu. Z. Povstenko, Introduction in the Mechanics of Surface Phenomena in Deformable Solids [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  14. 14.
    Ya. S. Pidstryhach and A. P. Poddubnyak, Scattering of Sound Beams by Elastic Bodies with Spherical and Cylindrical Forms [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  15. 15.
    Ya. S. Pidstryhach, V. A. Osadchuk, and A. M. Margolin, Residual Stresses, Long-Term Strength and Reliability of Glass Structures [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  16. 16.
    Ya. S. Pidstryhach, N. G. Chumachenko, V. G. Bar’yakhtar, et al., Problems of Regional Control over Scientific-Technical Progress: Theory, Method, Practice [in Russian], Nauka, Moscow (1984).Google Scholar
  17. 17.
    Ya. S. Pidstryhach, Tensors on Manifolds: Manual [in Ukrainian], Lviv University, Lviv (1986).Google Scholar
  18. 18.
    Yu. M. Kolyano, Methods of Heat Conduction and Thermoelasticity of Inhomogeneous Bodies [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  19. 19.
    A. R. Gachkevich, Thermomechanics of Electrically Conducting Bodies under the Action of Quasisteady Electromagnetic Fields [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  20. 20.
    H. S. Kit and O. V. Poberezhnyi, Nonstationary Processes in Bodies with Defects of the Type of Cracks [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  21. 21.
    R. M. Kushnir, M. M. Nykolyshyn, and V. A. Osadchuk, Elastic and Elastoplastic Limiting State of Shells with Defects [in Ukrainian], SPOLOM, Lviv (2003).Google Scholar
  22. 22.
    Ya. Burak, Ye. Chaplya, T. Nahirnyi, V. Chekurin, et al., Physico-Mathematical Modeling of Complex Systems [in Ukrainian], SPOLOM, Lviv (2004).Google Scholar
  23. 23.
    Ya. Yo. Burak, E. Ya. Chaplya, and O. Yu. Chernukha, Continual-Thermodynamic Models of the Mechanics of Solid Solutions [in Ukrainian], Naukova Dumka, Kiev (2006).Google Scholar
  24. 24.
    Ya. Yo. Burak and R. M. Kushnir (editors), Modeling and Optimization in Thermomechanics of Electrically Conducting Inhomogeneous Bodies, Vol. 1; Ya. Yo. Burak, O. R. Hachkevich, and R. F. Terlets’kyi, Thermomechanics of Multicomponent Bodies with Low Electroconductivity [in Ukrainian], SPOLOM, Lviv (2006).Google Scholar
  25. 25.
    Ya. Yo. Burak and R. M. Kushnir (editors), Modeling and Optimization in Thermomechanics of Electrically Conducting Inhomogeneous Bodies, Vol. 2; O. R. Hachkevich, R. F. Terlets’kyi, and T. L. Kurnyts’kyi, Mechanothermodiffusion in Partially Transparent Bodies [in Ukrainian], SPOLOM, Lviv (2007).Google Scholar
  26. 26.
    V. I. Kyr’yan, V. A. Osadchuk, and M. M. Nykolyshyn, Fracture Mechanics of Welded Joints of Metal Structures [in Ukrainian], SPOLOM, Lviv (2007).Google Scholar
  27. 27.
    H. S. Kit, M. V. Khai, and V. V. Mykhas’kiv, “A method of potentials in three-dimensional static and dynamical problems of the theory of cracks,” Fiz.-Khim. Mekh. Mat., 32 , No. 1, 22–32 (1996).Google Scholar
  28. 28.
    V. Vihak, Yu. Tokovyi, and A. Rychahivskyy, “Exact solution of the plane problem of elasticity in a rectangular region,” J. Comput. Appl. Mech., 3, No. 2, 193–206 (2002).MATHMathSciNetGoogle Scholar
  29. 29.
    O. I. Yatskiv and R. M. Shvets’, “Construction of a solution of the problem of mechanodiffusion on the two-component diffusion saturation and the stressed state of a layered cylinder,” Mat. Met. Fiz.-Mekh. Polya, 45, No. 3, 91–102 (2002).MATHGoogle Scholar
  30. 30.
    H. S. Kit and R. M. Martynyak, “Thermoelasticity of structures with heat-conducting cracks,” Mat. Met. Fiz.-Mekh. Polya, 46, No. 1, 11–20 (2003).MATHGoogle Scholar
  31. 31.
    Yu. Z. Povstenko, “The nonlocal and gradient theories of elasticity and their application to the description of imperfections in solids,” Mat. Met. Fiz.-Mekh. Polya, 46, No. 2, 136–146 (2003).MATHMathSciNetGoogle Scholar
  32. 32.
    H. S. Kit, Ya. I. Kunets, and V. V. Mykhas’kiv, “Interaction of a stationary wave with a thin disk-like inclusion with small toughness in an elastic body,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 82–89 (2004).Google Scholar
  33. 33.
    Yu. Z. Povstenko, “Fractional heat conduction equation and associated thermal stresses” J. Therm. Stresses, 28, No. 1, 83–102 (2005).CrossRefMathSciNetGoogle Scholar
  34. 34.
    V. A. Shevchuk, “Modeling and computation of heat transfer in a system ‘body-multilayer coating,’” Heat Transf. Res., 37, No. 5, 412–433 (2006).Google Scholar
  35. 35.
    R. M. Kushnir and V. S. Popovych, “Thermoelasticity of thermo-sensitive bodies with simple shape under complicated heat transfer,” in: Actual Aspects of Physicomechanical Studies. Mechanics [in Ukrainian], Naukova Dumka, Kiev (2007), pp. 153–164.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • Ya. Yo. Burak
    • 1
  • H. S. Kit
    • 1
  • R. M. Kushnir
    • 1
  1. 1.Pidstryhach Institute of Applied Problems of Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations