Journal of Mathematical Sciences

, Volume 161, Issue 6, pp 867–877 | Cite as

The number of faces of the tridiagonal Birkhoff polytope

  • L. Costa
  • C. M. da Fonseca
  • E. A. Martins


Counting basic objects as the vertices of polyhedra is a demanding problem in general, even for the most basic structured polytope. In this paper, we determine the number of q-faces for some q ≥ 1 of the polytope of tridiagonal doubly stochastic matrices.


Open Circle Recurrence Relation Open Vertex Fibonacci Number Permutation Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. de Tucumán Rev. Sér. A, 5, 147–151 (1946).MATHMathSciNetGoogle Scholar
  2. 2.
    R. Brualdi, “Convex polytopes of permutation invariant doubly stochastic matrices,” J. Combin. Theory, 23, 58–67 (1977).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. Brualdi and H. Ryser, Combinatorial Matrix Theory, Encycl. of Math. and its Appl., Cambridge Univ. Press (1991).Google Scholar
  4. 4.
    L. Costa, C. M. da Fonseca, and E. A. Martins, “The acyclic Birkhoff polytope,” Linear Algebra Appl., 428, 1524–1537 (2008).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Chartrand, T. Haynes, M. Henning, and P. Zhang, “Stratification and domination in graphs,” Discrete Math., 272, Nos. 2–3, 171–185 (2003).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    G. Dahl, “Tridiagonal doubly stochastic matrices,” Linear Algebra Appl., 390, 197–208 (2004).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. M. da Fonseca and E. Marques de Sá, “Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope,” Discrete Math., 308, 13081–1318 (2008).Google Scholar
  8. 8.
    C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York (2001).MATHGoogle Scholar
  9. 9.
    B. Grünbaum, Convex Polytopes, Second Edition, Springer-Verlag, New York (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.CMUC, Department of MathematicsUniversity of CoimbraCoimbraPortugal

Personalised recommendations