Journal of Mathematical Sciences

, Volume 161, Issue 2, pp 337–343 | Cite as

Converse Lyapunov theorems for nonautonomous discrete-time systems

  • Zhijun Zeng 


This paper presents converse Lyapunov theorems for exponential stability of nonautonomous discrete-time systems with disturbances and free of disturbances, respectively. It is shown that Lyapunov functions exist for discrete-time systems if the systems are exponentially stable. Moreover, in the periodic case, we explicitly construct a Lyapunov function for systems with disturbances.


Lyapunov Function Exponential Stability Model Predictive Control Exponential Convergence Periodic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. P. Gordon, “On converse to the stability theorems for difference equations,” SIAM J. Control Optim., 10, 76–81 (1972).MATHCrossRefGoogle Scholar
  2. 2.
    Z. P. Jiang and Y. Wang, “A converse Lyapunov theorem for discrete-time systems with disturbances,” Syst. Control Lett., 45, 49–58 (2002).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse Lyapunov theorem for robust stability,” SIAM J. Control Optim., 34, 124–160 (1996).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. L. Mancilla-Aguilar and R. A. García, “A converse Lyapunov theorem for nonlinear switch systems,” Syst. Control Lett., 41, 67–71 (2000).MATHCrossRefGoogle Scholar
  5. 5.
    J. L. Mancilla-Aguilar and R. A. García, “On converse Lyapunov theorems for ISS and iISS switched nonlinear systems,” Syst. Control Lett., 42, 47–53 (2001).MATHCrossRefGoogle Scholar
  6. 6.
    F. Mazenc, “Interconnected nonlinear systems, local and global for stabilization,” Syst. Control Lett., 35, No. 5, 317–323 (1998).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    F. Mazenc, “Strict Lyapunov functions for time-varying systems,” Automatica, 39, 349–353 (2003).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. S. Mousa, R. K. Miller, and A. N. Michel, “Stability analysis of hybrid composite dynamical systems: Descriptions involving operators and difference equations,” IEEE Trans. Automat. Control, 31, 603–615 (1986).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. M. Ortega, “Stability of difference equations and convergence of iterative processes,” SIAM J. Numer. Anal., 10, 268–282 (1973).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. O. M. Scokaert, J. B. Rawlings, and E. S. Meadows, “Discrete-time stability with perturbations: Application to model predictive control,” Automatica, 33, No. 3, 463–470 (1997).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Tsinias, S. Kotsios, and N. Kalouptsidis, “Topological dynamics of discrete-time systems,” In: M. A. Kaashoek, J. H. an Schuppen, A. C. M. Ran (Eds.), Robust Control of Linear Systems and Nonlinear Conrol, Proc. Int. Sympos. MTNS-89, Vol. II, Birkhäuser, Boston (1990), pp. 457–463.Google Scholar
  12. 12.
    J. Tsinias, “A converse Lyapunov theorem for nonuniform in time, global exponential robust stability,” Syst. Control Lett., 44, 373–384 (2001).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    V. I. Zubov, Methods of A. M. Lyapunov and Their Application, P. Noordhoff, Groningen, Netherlands (1964).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Institute of Systems Science, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP. R. China

Personalised recommendations