Journal of Mathematical Sciences

, Volume 159, Issue 6, pp 777–789 | Cite as

Generalized symmetric spaces, Yu. P. Solovyov’s formula, and the generalized Hermitian geometry

  • V. V. Balashchenko


We collect some basic results on canonical affinor structures of classical type on generalized symmetric spaces. Yu. P. Solovyov’s stimulating influence on this topic during its initial stages is illustrated. Using special canonical f-structures on homogeneous k-symmetric spaces, we also present a new collection of homogeneous Hermitian f-manifolds.


Riemannian Manifold Homogeneous Space Hermitian Structure Hermitian Manifold Canonical Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Abbena and S. Garbiero, “Almost Hermitian homogeneous manifolds and Lie groups,” Nihonkai Math. J., 4, 1–15 (1993).MATHMathSciNetGoogle Scholar
  2. 2.
    V. V. Balashchenko, Riemannian Geometry of Canonical Structures on Regular Φ-Spaces, Preprint No. 174/1994, Fakultät für Mathematik der Ruhr-Universität Bochum (1994).Google Scholar
  3. 3.
    V. V. Balashchenko, “Canonical f-structures of hyperbolic type on regular Φ-spaces,” Russ. Math. Surv., 53, No. 4, 861–863 (1998).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. V. Balashchenko, “Naturally reductive Killing f-manifolds,” Russ. Math. Surv., 54, No. 3, 623–625 (1999).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    V. V. Balashchenko, “Extending an idea of A. Gray: Homogeneous k-symmetric spaces and generalized Hermitian geometry,” in: Int. Congr. on Differential Geometry in Memory of Alfred Gray, September 18–23, 2000, Bilbao (Spain), Abstracts, pp. 5–7.Google Scholar
  6. 6.
    V. V. Balashchenko, “Homogeneous Hermitian f-manifolds,” Russ. Math. Surv., 56, No. 3, 575–577 (2001).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    V. V. Balashchenko, “Homogeneous nearly Kähler f-manifolds,” Dokl. Math., 63, No. 1, 56–58 (2001).MathSciNetGoogle Scholar
  8. 8.
    V. V. Balashchenko, “Invariant nearly Kähler f-structures on homogeneous spaces,” in: M. Fernández et al. (eds.), Global Differential Geometry: The Mathematical Legacy of Alfred Gray. Proc. of the Int. Congr. on Differential Geometry Held in Memory of Prof. Alfred Gray, Bilbao, Spain, September 18–23, 2000, Amer. Math. Soc., Providence (2001), Contemp. Math., Vol. 288, pp. 263–267.Google Scholar
  9. 9.
    V. V. Balashchenko, Invariant Nearly Kähler f-Structures on Homogeneous Spaces, SFB 288 Preprint No. 499, Berlin (2001).Google Scholar
  10. 10.
    V. V. Balashchenko, “The algebra of canonical affinor structures and classes of regular Φ-spaces,” Dokl. Math., 66, No. 1, 111–114 (2002).MATHGoogle Scholar
  11. 11.
    V. V. Balashchenko, “Invariant structures generated by Lie group automorphisms on homogeneous spaces,” in: N. Bokan, M. Djoric, A. T. Fomenko, Z. Rakic, and J. Wess, eds., Proc. of the Workshop “Contemporary Geometry and Related Topics” (Belgrade, Yugoslavia, 15–21 May, 2002), World Scientific (2004), pp. 1–32.Google Scholar
  12. 12.
    V. V. Balashchenko and Yu. D. Churbanov, “Invariant structures on homogeneous Φ-spaces of order 5,” Russ. Math. Surv., 45, No. 1, 195–197 (1990).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    V. V. Balashchenko and O. V. Dashevich, “Geometry of canonical structures on homogeneous Φ-spaces of order 4,” Russ. Math. Surv., 49, No. 4, 149–150 (1994).CrossRefMathSciNetGoogle Scholar
  14. 14.
    V. V. Balashchenko and N. A. Stepanov, “Canonical affinor structures on regular Φ-spaces,” Russ. Math. Surv., 46, No. 1, 247–248 (1991).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    V. V. Balashchenko and N. A. Stepanov, “Canonical affinor structures of classical type on regular Φ-spaces,” Sb. Math., 186, No. 11, 1551–1580 (1995).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    V. V. Balashchenko and D. V. Vylegzhanin, “Generalized Hermitian geometry on homogeneous Φ-spaces of finite order,” Russ. Math., No. 10, 33–44 (2004).Google Scholar
  17. 17.
    H. Baum, T. Friedrich, R. Grunewald, and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Teubner-Texte zur Mathematik, Vol. 124, Teubner, Stuttgart (1991).Google Scholar
  18. 18.
    Yu. D. Churbanov, “On some classes of homogeneous Φ-spaces of order 5,” Russ. Math., No. 2, 88–90 (1992).Google Scholar
  19. 19.
    Yu. D. Churbanov, “Canonical f-structures of homogeneous Φ-spaces of order 5,” Vestn. BGU. Ser. 1 Fiz., Mat., Mekh., No. 1, 51–54 (1994).Google Scholar
  20. 20.
    Yu. D. Churbanov, “The geometry of homogeneous Φ-spaces of order 5,” Russ. Math., No. 5, 68–78 (2002).Google Scholar
  21. 21.
    A. S. Fedenko, Spaces with Symmetries [in Russian], Belarusian State University, Minsk (1977).MATHGoogle Scholar
  22. 22.
    S. Garbiero and L. Vanhecke, “A characterization of locally 3-symmetric spaces,” Riv. Mat. Univ. Parma (5), 2, 331–335 (1993).MATHMathSciNetGoogle Scholar
  23. 23.
    A. Gray, “Nearly Kähler manifolds,” J. Differential Geom., 4, No. 3, 283–309 (1970).MATHGoogle Scholar
  24. 24.
    A. Gray, “Riemannian manifolds with geodesic symmetries of order 3,” J. Differential Geom., 7, No. 3-4, 343–369 (1972).MATHGoogle Scholar
  25. 25.
    A. Gray, “Homogeneous almost Hermitian manifolds,” in: Proc. of the Conf. on Differential Geometry on Homogeneous Spaces, Turin, Italy, 1983, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983), pp. 17–58.Google Scholar
  26. 26.
    A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., 123, No. 4, 35–58 (1980).MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    A. S. Gritsans, “On the geometry of Killing f-manifolds,” Russ. Math. Surv., 45, No. 4, 168–169 (1990).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A. S. Gritsans, “On the structure of Killing f-manifolds,” Russ. Math., 36, No. 6, 46–54 (1992).MATHMathSciNetGoogle Scholar
  29. 29.
    R. Grunewald, “Six-dimensional Riemannian manifolds with a real Killing spinor,” Ann. Global Anal. Geom., 8, No. 1, 43–59 (1990).MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York (1978).MATHGoogle Scholar
  31. 31.
    J. A. Jimenez, “Riemannian 4-symmetric spaces,” Trans. Amer. Math. Soc., 306, No. 2, 715–734 (1988).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    J. A. Jimenez, “Existence of Hermitian n-symmetric spaces and of non-commutative naturally reductive spaces,” Math. Z., 196, No. 2, 133–139 (1987).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    I. Kath, “Pseudo-Riemannian T-duals of compact Riemannian homogeneous spaces,” Transform. Groups, 5, No. 2, 157–179 (2000).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    V. F. Kirichenko, “K-spaces of constant type,” Sib. Math. J., 17, 220–225 (1976).MATHCrossRefGoogle Scholar
  35. 35.
    V. F. Kirichenko, “On the geometry of homogeneous K-spaces,” Math. Notes, 30, 779–785 (1981).Google Scholar
  36. 36.
    V. F. Kirichenko, “Sur la geometrie des varietes approximativement cosymplectiques,” C. R. Acad. Sci. Paris, Sér. 1, 295, No. 12, 673–676 (1982).MATHGoogle Scholar
  37. 37.
    V. F. Kirichenko, “Hermitian-homogeneous generalized almost Hermitian manifolds,” Sov. Math. Dokl., 30, 267–271 (1984).MATHGoogle Scholar
  38. 38.
    V. F. Kirichenko, “Quasi-homogeneous manifolds and generalized almost Hermitian structures,” Math. USSR Izv., 23, 473–486 (1984).MATHCrossRefGoogle Scholar
  39. 39.
    V. F. Kirichenko, “Methods of generalized Hermitian geometry in the theory of almost contact manifolds,” J. Sov. Math., 42, No. 5, 1885–1919 (1988).MATHCrossRefGoogle Scholar
  40. 40.
    V. F. Kirichenko, “Generalized quasi-Kählerian manifolds and axioms of CR-submanifolds in generalized Hermitian geometry. I,” Geom. Dedicata, 51, 75–104 (1994).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    V. F. Kirichenko, Differential-Geometric Structures on Manifolds [in Russian], MPGU, Moscow (2003).Google Scholar
  42. 42.
    V. F. Kirichenko and L. V. Lipagina, “Killing f-manifolds of constant type,” Izv. Math., 63, No. 5, 963–981 (1999).MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience–Wiley, New York (1969).Google Scholar
  44. 44.
    O. Kowalski, Generalized Symmetric Spaces, Lect. Notes Math., Vol. 805, Springer, Berlin (1980).MATHGoogle Scholar
  45. 45.
    S. Lang, Algebra, Addison-Wesley Ser. Math., Addison-Wesley (1965).Google Scholar
  46. 46.
    A. J. Ledger and L. Vanhecke, “On a theorem of Kiričenko relating to 3-symmetric spaces,” Riv. Mat. Univ. Parma (4), 13, 367–372 (1987).MATHMathSciNetGoogle Scholar
  47. 47.
    L. V. Lipagina, “On the structure of the algebra of invariant affinor structures on the sphere S 5,” Russ. Math., 41, No. 9, 15–18 (1997).MATHMathSciNetGoogle Scholar
  48. 48.
    S. Salamon, “Harmonic and holomorphic maps,” in: Geometry Seminar “Luigi Bianchi” II — 1984, Lect. Notes Math., Vol. 1164, Springer, Berlin (1985), pp. 161–224.CrossRefGoogle Scholar
  49. 49.
    S. M. Salamon, “Minimal surfaces and symmetric spaces,” in: Differential Geometry. Proc. 5th Int. Colloq., Santiago de Compostela/Spain, 1984, Res. Notes Math., 131, 103–114 (1985).Google Scholar
  50. 50.
    T. Sato, “Riemannian 3-symmetric spaces and homogeneous K-spaces,” Mem. Fac. Technology, Kanazawa Univ., 12, No. 2, 137–143 (1979).Google Scholar
  51. 51.
    K. Sekigawa and J. Watanabe, “On some compact Riemannian 3-symmetric spaces,” Sci. Rep. Niigata Univ. Ser. A, No. 19, 1–17 (1983).Google Scholar
  52. 52.
    K. Sekigawa and H. Yoshida, “Riemannian 3-symmetric spaces defined by some outer automorphisms of compact Lie groups,” Tensor, 40, No. 3, 261–268 (1983).MATHMathSciNetGoogle Scholar
  53. 53.
    K. D. Singh and R. Singh, “Some f(3, ε)-structure manifolds,” Demonstratio Math., 10, No. 3–4, 637–645 (1977).MATHMathSciNetGoogle Scholar
  54. 54.
    N. A. Stepanov, “Basic facts of the theory of φ-spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 88–95 (1967).Google Scholar
  55. 55.
    N. A. Stepanov, “Homogeneous 3-cyclic spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 65–74 (1967).Google Scholar
  56. 56.
    R. E. Stong, “The rank of an f-structure,” Kōdai Math. Sem. Rep., 29, 207–209 (1977).MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lect. Note Ser., Vol. 83, Cambridge Univ. Press (1983).Google Scholar
  58. 58.
    J. A. Wolf and A. Gray, “Homogeneous spaces defined by Lie group automorphisms,” J. Differential Geom., 2, No. 1–2, 77–159 (1968).MATHMathSciNetGoogle Scholar
  59. 59.
    K. Yano, “On a structure defined by a tensor field f of type (1, 1) satisfying f 3 + f = 0,” Tensor, 14, 99–109 (1963).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Faculty of Mathematics and MechanicsBelarusian State UniversityMinskBelarus

Personalised recommendations