Advertisement

Journal of Mathematical Sciences

, Volume 155, Issue 5, pp 709–747 | Cite as

Approximation properties of nilpotent interlacings of groups

  • A. I. Mamuchishvili
Article

Abstract

The work is devoted to the study of properties of verbal products and interlacings of groups, in particular, the problem of approximability and finite approximability.

Keywords

Nilpotent Group Free Generator Natural Homomorphism Basis Subgroup Word Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. N. Golovin, “On associative operations on the set of groups,” Dokl. Akad. Nauk SSSR, 38, 1237–1260 (1947).MathSciNetGoogle Scholar
  2. 2.
    O. N. Golovin, “Nilpotent products of groups,” Mat. Sb., 27, 427–545 (1950).MathSciNetGoogle Scholar
  3. 3.
    O. N. Golovin, “Meta-Abelian products of groups,” Mat. Sb., 28, 431–444 (1951).MathSciNetGoogle Scholar
  4. 4.
    O. N. Golovin, “On the question on the isomorphism of nilpotent expansions of a group,” Mat. Sb., 28, 334–352 (1951).Google Scholar
  5. 5.
    M. I. Kargapolov and E. I. Timoshenko, “On the question on finite approximability with respect to the conjugacy of meta-Abelian groups,” in: 4th All-Union Symp. on Group Theory, Novosibirsk (1973), pp. 86–88.Google Scholar
  6. 6.
    Yu. A. Kolmakov, Approximation properties of some factorgroups, Ph.D. Thesis, MGU (1982).Google Scholar
  7. 7.
    Yu. A. Kolmakov, “On the embedding into crossed products,” Sib. Mat. Zh., 26, No. 3, 63–72 (1985).MATHMathSciNetGoogle Scholar
  8. 8.
    Yu. V. Kuz'min, “Stable automorphisms of free polynilpotent groups,” Sib. Mat. Zh., 13, No. 4, 944–950 (1972).MathSciNetGoogle Scholar
  9. 9.
    S. MacLane, Homology [Russian translation], Mir, Moscow (1966).MATHGoogle Scholar
  10. 10.
    A. I. Mal'tsev, “On homomorphisms to finite groups,” Uch. Zap. Ivanovo Ped. Inst., 18, 49–60 (1958).Google Scholar
  11. 11.
    A. I. Mamuchishvili, “On the finite approximability of a nilpotent interlacing,” Soobshch. Akad. Nauk Georgian SSR, 76, No. 2, 301–303 (1971).Google Scholar
  12. 12.
    A. I. Mamuchishvili, “On the approximability of interlacings,” Nauch. Trudy GPI, 222, No. 1, 75–78 (1980).Google Scholar
  13. 13.
    A. I. Mamuchishvili, “On the approximability of a solvable product and interlacing of groups,” Nauch. Trudy GPI, 260, No. 3, 119–126 (1983).MathSciNetGoogle Scholar
  14. 14.
    A. I. Mamuchishvili and A. Sh. Malkhasyan, On the Finite Approximability with Respect to the Conjugacy of Some Free Polynilpotent Groups [in Russian], deposited at VINITI, No. 1590-83.Google Scholar
  15. 15.
    A. I. Mamuchishvili and A. Sh. Malkhasyan, “On a finite approximability with respect to the conjugacy of some free polynilpotent groups,” Sib. Mat. Zh., 25, No. 1, 209–210 (1984).Google Scholar
  16. 16.
    A. I. Mamuchishvili and V. M. Novik, “Notes on stable automorphisms of groups of one class,” Nauch. Trudy GPI, 237, No. 5, 76–81 (1981).Google Scholar
  17. 17.
    H. Neumann, Group Manifolds [Russian translation], Mir, Moscow (1969).Google Scholar
  18. 18.
    G. A. Novak, “Stable homomorphisms with respect to free groups,” in: 14th All-Union Algebraic Conf., Thes. Repts., Pt. I, Novosibirsk (1977), p. 48.Google Scholar
  19. 19.
    V. N. Remeslennikov and V. N. Sokolov, “Some properties on the Magnus embedding,” Algebra Logika, 9, No. 5, 566–578 (1970).MathSciNetGoogle Scholar
  20. 20.
    V. N. Remeslennikov, “Finite approximability of groups with respect to the conjugacy,” Sib. Mat. Zh., 12, No. 5, 1085–1099 (1971).MathSciNetGoogle Scholar
  21. 21.
    R. A. Sarkisyan, “Conjugacy in free polynilpotent groups,” Algebra Logika, 2, No. 6, 694–710 (1972).Google Scholar
  22. 22.
    R. A. Sarkisyan, “Stable automorphisms of some classes of groups,” Sib. Mat. Zh., 13, No. 5, 1031–1106 (1972).MathSciNetGoogle Scholar
  23. 23.
    E. I. Timoshenko, “Conjugacy in free meta-Abelian groups,” Algebra Logika, 6, No. 2, 89–94 (1967).Google Scholar
  24. 24.
    M. Hall, Group Theory [Russian translation], Inostrannaya Literatura, Moscow (1962).Google Scholar
  25. 25.
    A. L. Shmel'kin, “Interlacings and manifolds of groups,” Izv. Akad. Nauk SSSR. Ser. Mat., 29, No. 1, 149–170 (1965).MATHMathSciNetGoogle Scholar
  26. 26.
    A. L. Shmel'kin, “Two remarks on free nilpotent groups,” Algebra Logika, 6, No. 2, 95–109 (1967).Google Scholar
  27. 27.
    A. L. Shmel'kin, “Finite approximability of a free product of groups,” in: Thes. Repts. XVI All-Union Algebraic Conf., Pt. I, Leningrad (1981), p. 179.Google Scholar
  28. 28.
    A. L. Shmel'kin, “Approximation of a solvable product of groups,” in: Algebra, Collection of Papers Devoted to the 90th Birthday of O. Yu. Shmidt, MGU, Moscow (1982).Google Scholar
  29. 29.
    A. I. Eidelkind, “Verbal products of Magnus groups,” Mat. Sb., 85(127), No, 4, 504–526 (1971).MathSciNetGoogle Scholar
  30. 30.
    N. Blackburn, “Conjugacy in nilpotent groups,” Proc. Amer. Math. Soc., 16, 143–148 (1965).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    D. E. Cohen, “Groups of cohomological dimension one,” Lect. Notes Math., 245, Springer-Verlag, Berlin-New York (1972).Google Scholar
  32. 32.
    K. W. Grünberg, “Residual properties of infinite soluble groups,” Proc. London Math. Soc. (3), 7, 29–62 (1957).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    C. K. Gupta and N. D. Gupta, “Generalized Magnus embeddings and some applications,” Math. Z., 160, No. 1, 75–87 (1978).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    P. Hall, “On the finiteness of certain soluble groups,” Proc. London Math. Soc. (3)., 9, 595–622 (1959).MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    L. Kaloujnine, “Sur les p-groupes de Sylow du groupe symetrique du degre p m,” C. R. Acad. Sci. Paris, 221, 222–224 (1945).MATHMathSciNetGoogle Scholar
  36. 36.
    F. W. Levi, “Notes on group theory.” J. Indian Math. Soc. (N.S.), 8, 1–9, 44–56, 78–91 (1994); 9, 37–42 (1995).Google Scholar
  37. 37.
    S. Moran, “Associative operations on groups. I,” Proc. London Math. Soc. (3), 6, 581–596 (1956).MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    J. R. Stallings, “On torsion-free groups with infinitely many ends,” Ann. Math. (2), 88, 312–334 (1968).CrossRefMathSciNetGoogle Scholar
  39. 39.
    P. F. Stebe, “A residual property of certain groups,” Proc. Amer. Math. Soc., 26, 37–42 (1970).MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    R. G. Swan, “Groups of cohomological dimension one,” J. Algebra, 12, 585–610 (1969).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    B. A. F. Wehrfritz, “Two examples of soluble groups that are not conjugacy separable,” J. London Math. Soc. (2), 7, 312–316 (1973).MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    B. A. F. Wehrfritz, “Another example of a soluble group that is not conjugacy separable,” J. London Math. Soc. (2), 14, No. 2, 381–382 (1976).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • A. I. Mamuchishvili
    • 1
  1. 1.Georgian Technical UniversityTbilisiGeorgia

Personalised recommendations