Skip to main content
Log in

Manifold method in the eigenvector theory of nonlinear operators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This work is devoted to studying eigenvectors of nonlinear operators of general form. It is shown that manifolds generated by a family of linear operators are naturally connected with a nonlinear operator. These manifolds are an effective tool for studying the eigenvector problem of nonlinear, as well as linear operators. The description of the properties of the manifolds is of independent interest, and a considerable part of the work is devoted to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Appell, E. De Pascale, and A. Vignoli, “A comparison of different spectra for nonlinear operators,” Nonlinear Anal. TMA, 40, No. 1, 73–90 (2000).

    Article  Google Scholar 

  2. J. Appell and M. Dorfner, “Some spectral theory for nonlinear operators,” Nonlinear Anal. TMA, 28, No. 12, 1955–1976 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  3. V. I. Arnold, Arnold’s Problems, Springer-Phasis (2004).

  4. V. I. Arnold, “Modes and quasimodes,” Funkts. Anal. Pril., 6, No. 2, 94–101 (1972).

    Article  Google Scholar 

  5. V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  6. V. I. Arnold, “Remarks on eigenvalues and eigenvectors of Hermitian Matrices, the Berry phase, the adiabatic connections, and the Hall effect,” in: Selected Works [in Russian], Fazis, Moscow (1998), pp. 583–604.

    Google Scholar 

  7. P. B. Bailey, “An eigenvalue theorem for nonlinear second order differential equations,” J. Math. Anal. Appl., 20, 94–102 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Berestycki, “On some Sturm-Liouville problems,” J. Differ. Equations, 26, 375–399 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  9. Yu. G. Borisobich, V. G. Zvyagin, and Yu. I. Sapronov, “Nonlinear Fredholm mappings and Leray-Schauder theory,” Usp. Mat. Nauk, 32, No. 4, 3–54 (1977).

    Google Scholar 

  10. J.-P. Bourguignon, “Sturm-Liouville equations all of whose solutions are periodic,” in: A. Besse, Manifolds All of Whose Geodesics are Closed [Russian translation], Mir, Moscow (1981), pp. 290–305.

    Google Scholar 

  11. L. Bers, F. John, and M. Schechter, Partial Differential Equations [Russian translation], Mir, Moscow (1966).

    MATH  Google Scholar 

  12. C. Cosner, “Bifurcations from higher eigenvalues,” Nonlinear Anal. TMA, 12, No. 3, 271–277 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Courant and D. Hilbert, Methods of Mathematical Physics [Russian translation], Vol. 1, GITTL, Moscow, Leningrad (1951).

    Google Scholar 

  14. M. G. Crandall and P. H. Rabinowitz, “Bifurcation from simple eigenvalues,” J. Funct. Anal., 8, 321–340 (1977).

    Article  MathSciNet  Google Scholar 

  15. E. N. Dancer, “On the structure of solutions of nonlinear eigenvalue problems,” Indiana Univ. Math. J., 23, No. 11, 1069–1076 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  16. Ya. M. Dymarskii, “On the Lyusternik theorem for the two-point problem of fourth order,” in: Qualitative and Approximate Methods Operator Equations [in Russian], Yaroslavl’ (1984), pp. 16–24.

  17. Ya. M. Dymarskii, “Existence, oscillatory properties, and asymptotics of normed eigenfunctions of nonlinear boundary-value problems,” in: Qualitative and Approximate Methods for Studying Operator Equations [in Russian], Yaroslavl’ (1985), pp. 133–139.

  18. Ya. M. Dymarskii, “On normed eigenfunctions of the two-point nonlinear boundary-value problem,” Dokl. Akad. Nauk USSR, Ser. A., No. 4, 4–8 (1984).

  19. Ya. M. Dymarskii, “On normed eigenfunctions for a certain class of quasilinear elliptic equations,” Differents. Uravn., 34, No. 1, 127–129 (1998).

    MathSciNet  Google Scholar 

  20. Ya. M. Dymarskii, “On manifolds of eigenvectors of linear and quasilinear finite-dimensional self-adjoint operators. I,” Ukr. Mat. Zh., 53, No. 2, 156–167 (2001).

    Article  MathSciNet  Google Scholar 

  21. Ya. M. Dymarskii, “On manifolds of eigenvectors of linear and quasilinear finite-dimensional self-adjoint operators. II,” Ukr. Mat. Zh., 53, No. 3, 296–301 (2001).

    Article  MathSciNet  Google Scholar 

  22. Ya. M. Dymarskii, “On typical bifurcations in a certain class of operator equations,” Dokl. Ross. Akad. Nauk, 338, No. 4, 446–449 (1994).

    Google Scholar 

  23. Ya. M. Dymarskii, “On manifolds of self-adjoint elliptic operators with multiple eigenvalues,” Methods Funct. Anal. Topol., 7, No. 2, 68–74 (2001).

    MathSciNet  Google Scholar 

  24. Ya. M. Dymarskii, “Manifolds of self-adjoint operators with miltiple eigenvalues,” Mat. Fiz., Anal., Geom., 8, No. 2, 148–157 (2001).

    MathSciNet  Google Scholar 

  25. Ya. M. Dymarskii, “On quasi-linear representation of nonlinear strongly continuous operators,” Methods Funct. Anal. Topol., 8, No. 3, 20–26 (2002).

    MATH  MathSciNet  Google Scholar 

  26. Ya. M. Dymarskii, “Intersection number and eigenvectors of quasilinear Hilbert-Schmidt operators,” Mat. Fiz. Anal. Geom., 9, No. 4, 604–621 (2002).

    MATH  MathSciNet  Google Scholar 

  27. Ya. M. Dymarskii, “Manifolds of eigenfunctions and potentials of a family of periodic Sturm-Liouville problems,” Ukr. Mat. Zh., 54, No. 8, 1042–1052 (2002).

    Article  MathSciNet  Google Scholar 

  28. Ya. M. Dymarskii, “On quasilinear representations of finite-dimensional nonlinear operators,” Visn. Kiiv. Univ., No. 2, 27–32 (2002).

  29. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry, Methods of Homology Theory [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  30. L. D. Faddeev and O. A. Yakubovskii, Lectures in Quantum Mechanics for Students-Mathematicians [in Russian], Izhevsk (2001).

  31. M. V. Fedoryuk, Ordinary Differential Equations [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  32. P. Fitzpatrick and J. Pejsachowicz, “Orientation and the Leray-Shauder theory for fully nonlinear elliptic boundary value problems,” Mem. Amer. Math. Soc., 101, No. 483 (1993).

  33. A. T. Fomenko and D. B. Fuks, A Course in Homotopy Topology [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  34. L. Friedlander, “On the second eigenvalue of the Dirichlet Laplacian,” Izrael J. Math., 9, 23–32 (1992).

    Article  MathSciNet  Google Scholar 

  35. S. Fuĉik, J. Neĉas, and V. Soĉuek, Spectral Analysis of Nonlinear Operators, Springer-Verlag, Berlin-Heidelberg-New York (1973).

    MATH  Google Scholar 

  36. D. Fujiwara, M. Tanikawa, and Sh. Yukita, “The spectrum of the Laplacian. I,” Proc. Jpn. Acad. Ser. A, 54, No. 4, 87–91 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  37. W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry, Cambridge Univ. Press (1997).

  38. F. R. Gantmakher and M. G. Krein, Oscillatory Matrices and Kernels and Small Oscillations of Mechanical Systems [in Russian], GITTL, Moscow, Leningrad (1950).

    Google Scholar 

  39. V. A. Geiler and M. M. Senatorov, “Structure of the spectrum of the Schrödinger operator with magnetic field and finite-gap potentials,” Mat. Sb., 188, No. 5, 21–32 (1997).

    MathSciNet  Google Scholar 

  40. I. M. Gel’fand, Lectures in Linear Algebra [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  41. W. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second-Order [Russian translation], Mir, Moscow (1989).

    MATH  Google Scholar 

  42. P. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970).

    MATH  Google Scholar 

  43. E. L. Ince, “A proof of the impossibility of the coexistence of two Mathieu functions,” Proc. Cambr. Phil. Soc., 21, 117–120 (1922).

    MATH  Google Scholar 

  44. J. A. Ize, “Bifurcation theory for Fredholm operators,” Mem. Amer. Math. Soc., 174 (1976).

  45. E. Kamke, Handbook of Ordinary Differential Equations [Russian translation], IL, Moscow (1954).

    Google Scholar 

  46. J. B. Keller and S. Antman (eds.), Bifurcation Theory and Nonlinear Eigenvalue Problems [Russian translation], Mir, Moscow (1974).

    MATH  Google Scholar 

  47. J. Kelley, General Topology [Russian translation], Mir, Moscow (1968).

    MATH  Google Scholar 

  48. A. M. Krasnosel’skii, “On the number of unbounded solution branches in a neighborhood of an asymptotic bifurcation point,” Funkts. Anal. Prilozh., 39, No. 3, 194–206 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  49. V. M. Krasnosel’skii, “Projection method for studying bifurcations of the zero solution of a nonlinear operator equation with many-dimensional degeneration,” Dokl. Akad. Nauk SSSR, 198, No. 6, 1265–1268 (1971).

    MathSciNet  Google Scholar 

  50. M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], GITTL, Moscow (1956).

    Google Scholar 

  51. M. A. Krasnosel’skii, G. M. Vainikko, and P. P. Zabreiko, Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  52. M. A. Krasnosel’skii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  53. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic-Type Equations [in Russian], Nauka, Moscow (1973).

    MATH  Google Scholar 

  54. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 3. Quantum Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  55. S. Lang, An Introduction to the Theory of Differentiable Manifolds [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  56. M. A. Lavrent’ev and L. A. Lyusternik, Calculus of Variations [in Russian], Vol. 2, GITTL, Moscow (1935).

    Google Scholar 

  57. P.-L. Lions, “The Choquard equation and related questions,” Nonlinear Anal. TMA, 4, No. 6, 1063–1073 (1980).

    Article  MATH  Google Scholar 

  58. D. Lupo and A. M. Micheletti, “On the persistence of the multiplicity of eigenvalues for some variational operator depending on the domain,” J. Math. Anal. Appl., 193, 990–1002 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  59. L. A. Lyusternik, “Topology and the calculus of variations,” Usp. Mat. Nauk, 1, No. 1, 30–56 (1946).

    MATH  MathSciNet  Google Scholar 

  60. L. A. Lyusternik, “On a certain boundary-value problem in the theory of nonlinear differential equations,” Dokl. Akad. Nauk SSSR, 33, 5–8 (1941).

    Google Scholar 

  61. L. A. Lyusternik, “Some problems of nonlinear functional analysis,” Usp. Mat. Nauk, 11, No. 6, 145–168 (1956).

    MATH  MathSciNet  Google Scholar 

  62. V. A. Marchenko, Sturm-Liouville operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).

    MATH  Google Scholar 

  63. J. Milnor, Morse Theory [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  64. A. S. Mishchenko, Yu. P. Solov’ev, and A. T. Fomenko, Collection of Problems in Differential Geometry and Topology [in Russian], MGU, Moscow (1981).

    Google Scholar 

  65. S. Mizohata, Theory of Partial Differential Equations [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  66. K. Moran, Hilbert Space Methods [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  67. F. Neuman, “Linear differential equations of the second order and their application,” Rend. Mat. 3, 4, Ser. 6, 559–616 (1971).

    MathSciNet  Google Scholar 

  68. L. Nirenberg, Lectures in Nonlinear Functional Analysis [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  69. A. I. Perov, “On a fixed-point principle with two-sided estimates,” Dokl. Akad. Nauk SSSR, 124, No. 4, 756–759 (1959).

    MATH  MathSciNet  Google Scholar 

  70. S. I. Pokhozhaev, “On the bundle method for solving nonlinear boundary-value problems,” Tr. Mat. Inst. Akad. Nauk SSSR, 192, 146–163 (1960).

    MathSciNet  Google Scholar 

  71. P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems,” J. Funct. Anal., 7, 487–513 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  72. I. V. Skripnik, Methods for Studying Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  73. S. Smale, “An infinite dimensional version of Sard’s theorem,” Amer. J. Math., 85, 861–866 (1965).

    Article  MathSciNet  Google Scholar 

  74. A. Tal, “Eigenfunctions for a class a nonlinear differential equations,” J. Differ. Equations, 3, 112–134 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  75. R. E. L. Turner, “Nonlinear eigenvalue problems with nonlocal operators,” Comm. Pure Appl. Math., 23, No. 6, 963–972 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  76. K. Uhlenbeck, “Generic properties of eigenfunctions,” Amer. J. Math., 98, No. 4, 1059–1078 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  77. M. M. Vaiberg, Variational Method and the Method of Monotone Operators [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  78. M. I. Vishik and S. B. Kuksin, “On quasilinear elliptic equations,” Usp. Mat. Nauk, 40, No. 5, 306–307 (1985).

    Google Scholar 

  79. M. I. Vishik and S. B. Kuksin, “Quasilinear elliptic equations and Fredholm manifolds,” Vestn. MGU, Ser. 1, Mat. Meckh., No. 6, 23–30 (1985).

  80. G. T. Whyburn, Topological Analysis. Chap. I, Princeton Univ. Press., Princeton (1958).

    Google Scholar 

  81. P. P. Zabreiko and A. I. Povolotskii, “Quasilinear operators and the Hammerstein equation,” Mat. Zametki, 7, No. 6, 453–464 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. M. Dymarskii.

Additional information

__________

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 24, Functional Analysis, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dymarskii, Y.M. Manifold method in the eigenvector theory of nonlinear operators. J Math Sci 154, 655–815 (2008). https://doi.org/10.1007/s10958-008-9200-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9200-6

Keywords

Navigation