Journal of Mathematical Sciences

, Volume 154, Issue 4, pp 604–623 | Cite as

Around Borsuk’s hypothesis

  • A. M. Raigorodskii


Small Diameter Convex Body Universal Covering Chromatic Number Constant Width 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Boltyanskii, “The problem on illuminating the boundary of a convex body,” Izv. Mold. Filiala AN SSSR, 76, No. 10, 77–84 (1960).Google Scholar
  2. 2.
    V. G. Boltyanskii and I. Ts. Gokhberg, Theorems and Problems of Combinatorial Geometry [in Russian], Nauka, Moscow (1965).Google Scholar
  3. 3.
    E. D. Gluskin, “Extremal properties of orthogonal parallelepipeds and their application to the geometry of Banach spaces,” Mat. Sb., 136, No. 1, 85–96 (1988).MathSciNetGoogle Scholar
  4. 4.
    L. Danzer, B. Grünbaum, and V. Clee, Helly’s Theorem [Russian transl.], Mir, Moscow (1968).MATHGoogle Scholar
  5. 5.
    R. Diestel’, Theory of Graphs [in Russian], Izd. Inst. Mat., Novosibirsk (2002).Google Scholar
  6. 6.
    G. A. Kabatyanskii and V. I. Levenshtein, “Estimates for Packings on a Sphere and in a Space,” Probl. Pered. Inform., 14, 1–17 (1978).Google Scholar
  7. 7.
    A. B. Katok and B. Khassel’blat, Introduction to the Modern Theory of Dynamical Systems [in Russsian], Faktorial, Moscow (1999).Google Scholar
  8. 8.
    G. Conway and N. Slohen, Packings of Balls, a Lattice and a Group [Russian transl.], Mir, Moscow (1990).Google Scholar
  9. 9.
    I. P. Kornfel’d, Ya. G. Sinai, and S. V. Fomin, Ergodic Theory [in Russian], Nauka, Moscow (1980).MATHGoogle Scholar
  10. 10.
    N. N. Kuzyurin, “An asymptotic study of the covering problem,” Probl. Kibern., No. 37, 19–56 (1980).Google Scholar
  11. 11.
    V. K. Leont’ev, “Upper estimates of the α-depth of (0, 1)-matrices,” Mat. Zam., 15, No. 3, 421–429 (1974).MATHMathSciNetGoogle Scholar
  12. 12.
    L. A. Lyusternik and L. G. Shnirel’man, Topological Methods in Variational Problems [in Russian], Moscow (1930).Google Scholar
  13. 13.
    V. V. Makeev, “Universal covers and projections of bodies of constant width,” Ukr. Geom. Sb., bf32, 84–88 (1989).Google Scholar
  14. 14.
    V. V. Makeev, “Affine-inscribed and affine-circumscribed polygons and polyhedra,” Zap. Nauchn. Sem. POMI, 231, 286–298 (1996).Google Scholar
  15. 15.
    V. V. Makeev, “On affine images of a rhombododecahedron circumscribed around a three-dimensional convex body,” Zap. Nauchn. Sem. POMI, 246, 191–195 (1997).Google Scholar
  16. 16.
    E. I. Nechiporuk, “On topological principles of self-correction,” Probl. Kibern., No. 21, 5–103 (1969).Google Scholar
  17. 17.
    A. M. Raigorodskii, “On dimension in Borsuk’s problem,” Usp. Mat. Nauk, 52, No. 6, 181–182 (1997).MathSciNetGoogle Scholar
  18. 18.
    A. M. Raigorodskii, “On one estimate in Borsuk’s problem,” Usp. Mat. Nauk, 54, No. 2, 185–186 (1999).MathSciNetGoogle Scholar
  19. 19.
    A. M. Raigorodskii, “Systems of general representatives,” Fund. Prikl. Mat., 5, No. 3, 851–860 (1999)MathSciNetGoogle Scholar
  20. 20.
    A. M. Raigorodskii, “On a chromatic number of a space,” Usp. Mat. Nauk, 55, No. 2, 147–148 (2000).MathSciNetGoogle Scholar
  21. 21.
    A. M. Raigorodskii, “Borsuk’s problem for (0, 1)-polyhedra and cross-polytopes,” Dokl. Ross. Akad. Nauk, 371, 600–603 (2002).MathSciNetGoogle Scholar
  22. 22.
    A. M. Raigorodskii, “Borsuk’s problem and chromatic numbers of certain metric spaces,” Usp. Mat. Nauk, 56, No. 1, 107–146 (2001).MathSciNetGoogle Scholar
  23. 23.
    A. M. Raigorodskii, “Borsuk’s problem for (0, 1)-polyhedra and cross-polytopes,” Dokl. Ross. Akad. Nauk, 384, 593–597 (2002).MathSciNetGoogle Scholar
  24. 24.
    A. M. Raigorodskii, “On one problem of an optimal covering of sets by balls,” Chebyshev. Sb., 3, No. 2(4), 100–106 (2002).MATHMathSciNetGoogle Scholar
  25. 25.
    A. M. Raigorodskii, “Borsuk’s and Hadwiger’s problems and systems of vectors with bans on inner products,” Usp. Mat. Nauk, 57, No. 3, 159–160 (2002).MathSciNetGoogle Scholar
  26. 26.
    A. M. Raigorodskii, “Borsuk’s problem for integer polyhedra,” Mat. Sb., 193, No. 10, 139–160 (2002).MathSciNetGoogle Scholar
  27. 27.
    A. M. Raigorodskii, “On lower estimates for Borsuk’s and Hadwiger’s numbers,” Usp. Mat. Nauk, 59, No. 3, 177–178 (2003).MathSciNetGoogle Scholar
  28. 28.
    A. M. Raigorodskii, “Borsuk’s, Grünbaum, and Hadwiger’s problems for certain classes of polyhedra and graphs,” Dokl. Ross. Akad. Nauk, 388, No. 6, 738–742 (2003).MathSciNetGoogle Scholar
  29. 29.
    A. M. Raigorodskii, “The Erdös-Hadwiger problem and chromatic numbers of finite geometric graphs,” Dokl. Ross. Akad. Nauk, 392, No. 3, 313–317 (2003).MathSciNetGoogle Scholar
  30. 30.
    A. M. Raigorodskii, “Borsuk’s and Grünbaum problems for lattice polyhedra,” Izv. Ross. Akad. Nauk, 69, No. 3, 96–121 (2004).Google Scholar
  31. 31.
    A. M. Raigorodskii, “On the chromatic number of the space with the metric l q,” Usp. Mat. Nauk, 59, No. 5, 161–162 (2004).MathSciNetGoogle Scholar
  32. 32.
    A. M. Raigorodskii, “On chromatic numbers of metric spaces.” Chebyshev. Sb., 5, No. 1(9), 175–185 (2004).Google Scholar
  33. 33.
    A. M. Raigorodskii, “On relationship between the Borsuk and Nelson-Erdös-Hadwiger problems,” Usp. Mat. Nauk, 60 (2005)Google Scholar
  34. 34.
    A. M. Raigorodskii, “The Erdös-Hadwiger problem and chromatic numbers of finite geometric graphs,” Mat. Sb., 196, No. 1 (2005).Google Scholar
  35. 35.
    A. M. Raigorodskii, “Chromatic numbers of metric spaces,” in: Proc. Inst. Math. of the National Academy of Sciences, Belarus (2005).Google Scholar
  36. 36.
    A. M. Raigorodskii, “On Borsuk and Erdös-Hadwiger’s numbers,” Mat. Zametki (2005).Google Scholar
  37. 37.
    A. M. Raigorodskii and Yu. A. Kalnishkan, “On Borsuk’s problem in ℝ3,” Mat. Zametki, 74, No. 1, 149–151 (2003).MathSciNetGoogle Scholar
  38. 38.
    A. M. Raigorodskii and A. A. Chernov, “Borsuk’s problem for certain classes of polyhedra,” Chebyshev. Sb., 5, No. 2(10), 98–103 (2004).MATHMathSciNetGoogle Scholar
  39. 39.
    A. S. Riesling, “Borsuk’s problem in three-dimensional spaces of constant curvature,” Ukr. Geom. Sb., 11, 78–83 (1971).Google Scholar
  40. 40.
    K. Rogers, Packings and Coverings [Russian transl.], Mir, Noscow (1968).Google Scholar
  41. 41.
    A. A. Sapozhenko, “On complexity of disjunctive normal forms obtained by using the gradient algorithm,” Diskr. Anal., Novosibirsk, No. 21, 62–71 (1972).Google Scholar
  42. 42.
    V. E. Tarakanov, Combinatorial Problems and (0, 1)-Matrices [in Russian], Nauka, Moscow (1985).MATHGoogle Scholar
  43. 43.
    H. Hadwiger and H. Debrunner, Combinatorial Geometry of a Plane [Russian transl.], Nauka, Moscow (1965).Google Scholar
  44. 44.
    F. Harari, Theory of Graphs [Russian transl.], Mir, Moscow (1973).Google Scholar
  45. 45.
    R. Ahlswede and L. H. Khachatrian, “The complete nontrivial-intersection theorem for systems of finite sets,” J. Combin. Theor. Ser. A, 76, 121–138 (1997).CrossRefMathSciNetGoogle Scholar
  46. 46.
    R. Ahlswede, L. H. Khachatrian, “The complete intersection theorem for systems of finite sets,” Eur. J. Combin., 18, 125–136 (1997).MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    M. Aigner and G. M. Ziegler, Proofs from THE BOOK, Springer-Verlag Berlin (1998).MATHGoogle Scholar
  48. 48.
    N. Alon, L. Babai, and H. Suzuki, “Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems,” J. Combin. Theor. Ser. A, 58, 165–180 (1991).MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience Ser. in Discr. Math. and Optimization (2000).Google Scholar
  50. 50.
    L. Babai and P. Frankl, Linear Algebra Methods in Combinatorics, Part 1, Department of Computer Science, The University of Chicago, Preliminary version 2, September 1992.Google Scholar
  51. 51.
    M. Benda and M. Perles, “Colorings of metric space,” Geombinatorics, 9, 113–126 (2000).MATHMathSciNetGoogle Scholar
  52. 52.
    B. Bollobás, “The chromatic number of random graphs,” Combinatorica, 8, 49–56 (1988).MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    B. Bollobás, Random Graphs, Cambridge Univ. Press, Second Edition (2001).Google Scholar
  54. 54.
    V. G. Boltyanski, H. Martini and P. S. Soltan, Excursions into Combinatorial Geometry, Berlin-Heidelberg: Universitext, Springer-Verlag (1997).MATHGoogle Scholar
  55. 55.
    K. Borsuk, “Über die Zerlegung einer Euklidischen n-dimensionalen Vollkugel in n Mengen,” Verh. Internat Math. Kongr., Zürich, 2, 192 (1932).MathSciNetGoogle Scholar
  56. 56.
    K. Borsuk, “Drei Sätze über die n-dimensionale euklidische Sphäre,” Fundam. Math., 20, 177–190 (1933).Google Scholar
  57. 57.
    J. Bourgain and J. Lindenstrauss, “On covering a set in ℝd by balls of the same diameter,” in: Geometric Aspects of Functional Analysis (J. Lindenstrauss and V. Milman, eds.), Lecture Notes in Math., 1469, Berlin: Springer-Verlag (1991), pp. 138–144.CrossRefGoogle Scholar
  58. 58.
    L. Danzer, “On the kth diameter in E d and a problem of Grünbaum,” Proc. Colloquium on Convexity, Copenhagen, (1965), p. 41.Google Scholar
  59. 59.
    N. G. de Bruijn and P. Erdös, “A colour problem for infinite graphs and a problem in the theory of relations,” Proc. Koninkl. Nederl. Acad. Wet., Ser. A, 54, No. 5, 371–373 (1951).MATHGoogle Scholar
  60. 60.
    M. Deza, P. Erdös, and P. Frankl, “Intersection properties of systems of finite sets,” Proc. London Math. Soc., 36, 369–384 (1978).MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    M. Deza, P. Erdös, and N. M. Singhi, “Combinatorial problems on subsets and their intersections,” Adv. Math., Suppl. Stud., 1, 259–265 (1978).Google Scholar
  62. 62.
    M. Deza and P. Frankl, “Erdös-Ko-Rado theorem: 22 years later,” SIAM J. Alg. Disc. Methods, 4, 419–431 (1983).MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    H. G. Eggleston, “Covering a three-dimensional set with sets of smaller diameter,” J. London Math. Soc., 30, 11–24 (1955).MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    H. G. Eggleston, Convexity, Cambridge Univ. Press (1958).Google Scholar
  65. 65.
    P. Erdös, “On sets of distances of n points,” Am. Math. Mon., 53, 248–250 (1946).MATHCrossRefGoogle Scholar
  66. 66.
    P. Erdös, “My Scottish Book Problems,” in: The Scottish Book, Mathematics from the Scottish Café (R. D. Mauldin ed.), Birkhäuser (1981), pp.35–43.Google Scholar
  67. 67.
    P. Erdös, Chao Ko and R. Rado, “Intersection theorems for systems of finite sets,” J. Math. Oxford, 12(48) (1961).Google Scholar
  68. 68.
    P. Frankl, “The Erdös-Ko-Rado theorem is true for n = ckt,” Combinatorics, Coll. Math. Soc. J. Bolyai 18, 365–375 (1978).MathSciNetGoogle Scholar
  69. 69.
    P. Frankl, “Extremal problems and coverings of the space,” Eur. J. Combin., 1, 101–106 (1980).MATHMathSciNetGoogle Scholar
  70. 70.
    P. Frankl and R. M. Wilson, “Intersection theorems with geometric consequences,” Combinatorica, 1, 357–368 (1981).MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Z. Füredi, “Turán’s type problems,” in: Surveys in Combinatorics, Proc. of the 13th British Combinatorics Conference (A. D. Keedwell, ed.). Cambridge Univ. Press, London Math. Soc. Lecture Note Series, 166 (1991), pp. 253–300.Google Scholar
  72. 72.
    D. Gale, “On inscribing n-dimensional sets in a regular n-simplex,” Proc. Am. Math. Soc., 4, 222–225 (1953).MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    J. Grey und B. Weissbach, Ein weiteres Gegenbeispiel zur Borsukschen Vermutung, Univ. Magdeburg, Fakultät für Mathematik, Preprint 25 (1997).Google Scholar
  74. 74.
    P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam (1987).MATHGoogle Scholar
  75. 75.
    B. Grünbaum, “A simple proof of Borsuk’s conjecture in three dimensions,” Proc. Cambridge Philos. Soc., 53, 776–778 (1957).MATHMathSciNetGoogle Scholar
  76. 76.
    B. Grünbaum, “Borsuk’s problem and related questions,” Proc. Symp. Pure Math., 7, 271–284 (1963).Google Scholar
  77. 77.
    H. Hadwiger, “Überdeckung einer Menge durch Mengen kleineren Durchmessers,” Commun. Math. Helv., 18, 73–75 (1945/46); Mitteilung betreffend meine Note: “Überdeckung einer Menge durch Mengen kleineren Durchmessers,” Commun. Math. Helv., 19, 72–73 (1946/47).MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    H. Hadwiger, “Ungelöste Probleme No. 20,” Elem. Math., 12, 121 (1957).MathSciNetGoogle Scholar
  79. 79.
    H. Hadwiger, “Ungelöste Probleme No. 38,” Elem. Math., 15, 130–131 (1960).MathSciNetGoogle Scholar
  80. 80.
    H. Hadwiger, “Ungelöste Probleme No. 40,” Elem. Math., 16, 103–104 (1961).MathSciNetGoogle Scholar
  81. 81.
    H. C. Hansen, “Small universal covers for sets of unit diameter,” Geom. Dedicata, 42, 205–213 (1992).MATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    E. Helly, “Über Systeme abgeschlossener Mengen mit gemeinschaftlichen Punkten,” Monatsh. Math., 37, 281–302 (1930).MATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    E. Helly, “On a collection of convex bodies with common points,” Russ. Math. Surv., 2, No. 2 (1936).Google Scholar
  84. 84.
    A. Heppes, “Térbeli ponthalmazok felosztása kisebb átméröjü részhalmazok összegére,” A magyar tudományos akadémia, 7, 413–416 (1957).MATHMathSciNetGoogle Scholar
  85. 85.
    A. Heppes and P. Révész, “Zum Borsukschen Zerteilungsproblem,” Acta Math. Acad. Sci. Hung., 7, 159–162 (1956).MATHCrossRefGoogle Scholar
  86. 86.
    A. Hinrichs, “Spherical codes and Borsuk’s conjecture,” Discr. Math., 243, 253–256 (2002).MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    A. Hinrichs and Ch. Richter, “New sets with large Borsuk numbers,” (2002)
  88. 88.
    H. W. E. Jung, “Über die kleinste Kugel, die eine räumliche Figur einschliesst,” J. Reine Angew. Math., 123, 241–257 (1901).MATHGoogle Scholar
  89. 89.
    J. Kahn and G. Kalai, “A counterexample to Borsuk’s conjecture,” Bull. Am. Math. Soc. (New Ser.), 29, No. 1, 60–62 (1993).MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    J-H. Kang and Z. Füredi, “Distance graphs on ℤn with l 1-norm,” Theor. Comput. Sci., 319, No. 1–3, 357–366 (2004).MATHGoogle Scholar
  91. 91.
    G. Katona, T. Nemetz, and M. Simonovitz, “On a graph problem of Turan” [in Hungarian], Mat. Lapok, 15, 228–238 (1964).MATHMathSciNetGoogle Scholar
  92. 92.
    P. Katzarowa-Karanowa, “Über ein euklidisch-geometrisches Problem von B. Grünbaum,” Arch. Math., 18, 663–672 (1967).MATHCrossRefMathSciNetGoogle Scholar
  93. 93.
    D. Larman, “Open problem 6. Convexity and Graph theory,” (M. Rozenfeld and J. Zaks eds.), Ann. Discr. Math., 20, North-Holland, Amsterdam and New York (1984), p. 336.Google Scholar
  94. 94.
    D. G. Larman, “A note on the realization of distances within sets in Euclidean space,” Comment. Math. Helv., 53, 529–535 (1978).MATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    D. G. Larman and C. A. Rogers, “The realization of distances within sets in Euclidean space,” Mathematika, 19, 1–24 (1972).MATHMathSciNetGoogle Scholar
  96. 96.
    M. Lassak, “An estimate concerning Borsuk’s partition problem,” Bull. Acad. Pol. Sci. Ser. Math., 30, 449–451 (1982).MATHMathSciNetGoogle Scholar
  97. 97.
    H. Lenz, “Zur Zerlegung von Punktmengen in solche kleineren Durchmessers,” Arch. Math., 6, No. 5, 413–416 (1955).MATHCrossRefMathSciNetGoogle Scholar
  98. 98.
    H. Lenz, “Über die Bedeckung ebener Punktmengen durch solche kleineren Durchmessers,” Arch. Math., 4, 34–40 (1956).CrossRefMathSciNetGoogle Scholar
  99. 99.
    N. Linial, R. Meshulam, and M. Tarsi, “Matroidal bijections between graphs,” J. Combin. Theor. Ser. B, 45, No. 1, 31–44 (1988).MATHCrossRefMathSciNetGoogle Scholar
  100. 100.
    H. Martini and V. Soltan, “Combinatorial problems on the illumination of convex bodies,” Aequationes Math., 57, 121–152 (1999).MATHCrossRefMathSciNetGoogle Scholar
  101. 101.
    A. Nilli, “On Borsuk’s problem,” Contemp. Math., 178, 209–210 (1994).MathSciNetGoogle Scholar
  102. 102.
    J. Pál, “Über ein elementares Variationsproblem,” Danske Videnskab. Selskab., Math.-Fys. Meddel, 3, No. 2 (1920).Google Scholar
  103. 103.
    C. Payan, “On the chromatic number of cube like graphs,” Discr. Math., 103, 271–277 (1992).MATHCrossRefMathSciNetGoogle Scholar
  104. 104.
    J. Petersen, Färbung von Borsuk-Graphen in niedriger Dimension, Diplomarbeit, TU Berlin (1998).Google Scholar
  105. 105.
    O. Pikhurko, “Borsuk’s conjecture fails in dimensions 321 and 322,” e-print: arXiv: math.CO/0202112, 2002.Google Scholar
  106. 106.
    A. M. Raigorodskii, “The Borsuk partition problem: the seventieth anniversary,” Mathematical Intelligencer, 26, No. 4, 4–12 (2004).MATHMathSciNetCrossRefGoogle Scholar
  107. 107.
    R. Rankin, “On the closest packing of spheres in n dimensions,” Ann. Math., 48, 1062–1081 (1947).CrossRefMathSciNetGoogle Scholar
  108. 108.
    D. K. Ray-Chaudhuri and R. M. Wilson, “On t-designs,” Osaka J. Math., 12, 735–744 (1975).MathSciNetGoogle Scholar
  109. 109.
    F. Reuleaux, Lehrbuch der Kinematik I. Vieweg, Braunschweig (1875).Google Scholar
  110. 110.
    C. A. Rogers, “Covering a sphere with spheres,” Mathematika, 10, 157–164 (1963).MATHMathSciNetGoogle Scholar
  111. 111.
    C. A. Rogers, “Symmetrical sets of constant width and their partitions,” Mathematika, 18, 105–111 (1971).MATHMathSciNetCrossRefGoogle Scholar
  112. 112.
    C. A. Rogers, “Some problems in the geometry of convex bodies. The Geometric Vein,” in: The Coxeter Festschrift (C. Davis, B. Grünbaum, and F. A. Sherk, eds.), Springer-Verlag, New York (1981), pp. 279–284.Google Scholar
  113. 113.
    F. Schiller, Zur Berechnung und Abschätzung von Färbungszahlen und der ϑ-Funktion von Graphen, Diplomarbeit, TU Berlin (1999).Google Scholar
  114. 114.
    J. Schopp, “Die Abdeckung ebener Bereiche mit konstanten Durchmessern durch drei Kreise von kleinerem Durchmesser,” Vortrag, gehalten auf der Geometrie-Tegen in Tihany (Ungarn) (1965).Google Scholar
  115. 115.
    O. Schramm, “Illuminating sets of constant width,” Mathematika, 35, 180–189 (1988).MATHMathSciNetGoogle Scholar
  116. 116.
    A. Soifer, “Chromatic number of the plane: a historical essay,” Geombinatorics, 13–15 (1991).Google Scholar
  117. 117.
    A. Soifer, Mathematical Coloring Book, Center for Excellence in Mathematical Education (1997).Google Scholar
  118. 118.
    P. Turán, “Egy grafelmeletiszelsoertek feladatrol,” Mat. Fiz. Lapok, 48, 436–452 (1941).MATHMathSciNetGoogle Scholar
  119. 119.
    B. Weissbach, “Polyhedral covers,” Collect. Math. Soc. J. Bolyai, 48 (Intuitive Geometry), North-Holland, Amsterdam et al. (1987), pp. 639–646.Google Scholar
  120. 120.
    B. Weissbach, “Sets with large Borsuk number,” Beitr. Alg. Geom., 41, 417–423 (2000).MATHMathSciNetGoogle Scholar
  121. 121.
    R. M. Wilson, “The exact bound in the Erdös-Ko-Rado theorem,” Combinatorica, 4, 247–257 (1984).MATHCrossRefMathSciNetGoogle Scholar
  122. 122.
    G. M. Ziegler, “Lectures on 0/1-polytopes,” in: Polytopes-Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), DMV, seminar 29, Birkhäuser, Basel (2000), pp. 1–44.Google Scholar
  123. 123.
    G. M. Ziegler, “Coloring Hamming graphs, optimal binary codes, and the 0/1-Borsuk problem in low dimensions,” Lect. Notes Comput. Sci., 2122, 159–171 (2001).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • A. M. Raigorodskii
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations