Advertisement

Journal of Mathematical Sciences

, 153:518 | Cite as

Lattices of subrepresentations of Lie algebras and their isomorphisms

  • A. Lashkhi
  • T. Gelashvili
Article

Abstract

To obtain the representation (L, R) of Lie algebras over the ring Λ, we construct the lattice of subrepresentations ℒ(L, R). Relations between the algebras L and R and the lattice ℒ(L, R) are studied. It turns out that in some cases the isomorphism of the lattice ℒ(L, R) can be continued so as to obtain a wider sublattice ℒ(LλR) consisting of subalgebras of a semidirect product LλR.

Keywords

Stable Representation Projective Geometry Invertible Element Lattice Isomorphism Lower Central Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. K. Amayo, “Quasi-ideals of Lie algebras, I,” Proc. London Math. Soc. (3), 33, No. 1, 28–36 (1976).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. K. Amayo, “Quasi-ideals of Lie algebras, II,” Proc. London Math. Soc. (3), 33, No. 1, 37–64 (1976).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. K. Amayo and J. Schwarz, “Modularity in Lie algebras,” Hiroshima Math. J., 10, No. 2, 311–322 (1980).MATHMathSciNetGoogle Scholar
  4. 4.
    E. Artin, Geometric Algebra, Interscience, New York-London (1957).MATHGoogle Scholar
  5. 5.
    R. Baer, “The significance of the system of subgroups for the structure of the groups,” Amer. J. Math., 61, 1–44 (1939).CrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Baer, Linear Algebra and Projective Geometry, Academic Press, New York (1952).MATHGoogle Scholar
  7. 7.
    Yu. A. Bakhturin, Identities in Lie Algebras [in Russian], Nauka, Moscow (1985).MATHGoogle Scholar
  8. 8.
    D. W. Barnes, “Lattice isomorphisms of Lie algebras,” J. Austr. Math. Soc., 4, 470–475 (1964).MATHMathSciNetGoogle Scholar
  9. 9.
    D. W. Barnes and G. E. Wall, “On normaliser preserving lattice isomorphisms between nilpotent groups,” J. Austr. Math. Soc., 4, 454–469 (1964).MATHMathSciNetGoogle Scholar
  10. 10.
    M. Berger, Géométrie. Vol. 1, 2, CEDIC, Paris; Nathan Information, Paris (1977).Google Scholar
  11. 11.
    K. Bowman and D. Towers, “Modularity conditions in Lie algebras,” Hiroshima Math. J., 19, No. 2, 333–346 (1989).MATHMathSciNetGoogle Scholar
  12. 12.
    K. Bowman and V. R. Varea, “Modularity in Lie algebras,” Proc. Edinburgh Math. Soc. (2), 40, No. 1, 99–110 (1997).MATHMathSciNetGoogle Scholar
  13. 13.
    K. Bowman, D. A. Towers, and V. R. Varea, “On upper-modular subalgebras of a Lie algebra,” Proc. Edinburgh Math. Soc. (2), 47, No. 2, 325–337 (2004).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. G. Gein, “Semimodular Lie algebras,” Sib. Mat. Zh., 17, No. 2, 243–248 (1976).MathSciNetGoogle Scholar
  15. 15.
    A. G. Gein, “Supersolvable Lie algebras and the Dedekind law in the lattice of subalgebras,” Uch. Zap. Ural. Gos. Univ., 10, No. 3, 33–42 (1977).MathSciNetGoogle Scholar
  16. 16.
    A. G. Gein, “Modular subalgebras and projection of locally finite-dimensional Lie algebras of characteristic 0,” Uch. Zap. Ural. Gos. Univ., 13, No. 3, 39–51 (1983).MathSciNetGoogle Scholar
  17. 17.
    A. G. Gein, “Modular subalgebras of Lie algebras,” Uch. Zap. Ural. Gos. Univ., 14, No. 2, 27–33 (1987).MathSciNetGoogle Scholar
  18. 18.
    A. G. Gein, “The modular law and relative complements in the lattice of subalgebras of a Lie algebra,” Izv. Vyssh. Uchebn. Zaved. Mat., 83, No. 3, 18–25, (1987).MathSciNetGoogle Scholar
  19. 19.
    A. G. Gein, “Co-atomic lattices and Lie algebras,” Uch. Zap. Ural. Gos. Univ., 14, No. 3, 66–74 (1988).MathSciNetGoogle Scholar
  20. 20.
    A. G. Gein and V. R. Varea, “Solvable Lie algebras and their subalgebra lattices,” Commun. Algebra, 20, No. 8, 2203–2217 (1992).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    T. M. Gelashvili, “Local and approximation theorems in projecting Lie algebra representations,” IXth National Conf. Mathematicians of the Georgian SSR, Kutaisi [in Russian], (1987).Google Scholar
  22. 22.
    T. M. Gelashvili, “Projections of representations of Lie algebras,” Soobshch. Akad. Nauk Gruzin. SSR [in Russian], 130, No. 3, 473–476 (1988).MATHMathSciNetGoogle Scholar
  23. 23.
    T. M. Gelashvili, “Connected projections of representations of Lie algebras,” Soobshch. Akad. Nauk Gruzin. SSR [in Russian], 134, No. 1, 37–39 (1989).MATHMathSciNetGoogle Scholar
  24. 24.
    T. M. Gelashvili, “Lattices of cosets of associated algebras,” Soobshch. Akad. Nauk Gruzin. SSR [in Russian], 138, No. 2, 261–264 (1990).MATHMathSciNetGoogle Scholar
  25. 25.
    T. M. Gelashvili, “Radicals in lattices of representations of Lie algebras,” Bull. Georgian Acad. Sci., 141, No. 3 (1991).Google Scholar
  26. 26.
    T. M. Gelashvili and A. A. Lashkhi, “The fundamental theorem of affine geometry for moduls and Lie algebras,” Bull. Georgian Acad. Sci., 141, No. 2 (1991).Google Scholar
  27. 27.
    R. C. Glaeser and B. Kolman, “Lattice isomorphic solvable Lie algebras,” J. Austr. Math. Soc., 10, 266–268 (1969).MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Goto, “Lattices of subalgebras of real Lie algebras,” J. Algebra, 11, 6–24 (1969).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    G. Gratzer, General Lattice Theory, Academic Press, New York-London (1978).Google Scholar
  30. 30.
    L.-K. Hua, “On the automorphisms of a field,” Proc. Nat. Acad. Sci. U.S.A., 35, 386–389 (1949).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    N. Jacobson and C. E. Rickart, “Jordan homomorphisms of rings,” Trans. Amer. Math. Soc., 69, 479–502 (1950).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    N. Jacobson, Lie Algebras, Dover Publications, New York (1979).Google Scholar
  33. 33.
    B. Kolman, “Semi-modular Lie algebras,” J. Sci. Hiroshima Univ. Ser. A-I Math., 29, 149–163 (1965).MATHMathSciNetGoogle Scholar
  34. 34.
    B. Kolman, “Relatively complemented Lie algebras,” J. Sci. Hiroshima Univ. Ser. A-I Math., 31, 1–11 (1967).MATHMathSciNetGoogle Scholar
  35. 35.
    A. A. Lashkhi, “Projection of Magnus Lie rings,” Tr. Gruz. Politekh. Inst., 8, 7–11 (1971).Google Scholar
  36. 36.
    A. A. Lashkhi, “Structural isomorphisms of Lie algebras connected with their representations,” Tr. Gruz. Politekh. Inst., 176, No. 3, 52–64 (1975).Google Scholar
  37. 37.
    A. A. Lashkhi, “Structural isomorphisms of some classes of Lie algebras,” Tr. Tbilisi Mat. Inst. [in Russian], 46, 5–21 (1975).MATHGoogle Scholar
  38. 38.
    A. A. Lashkhi, “Structural isomorphisms of rings and Lie algebras,” Dokl. Akad. Nauk SSSR, 228, No. 3, 537–539 (1976).MathSciNetGoogle Scholar
  39. 39.
    A. A. Lashkhi, “Projection of pure supersolvable Lie rings,” Mat. Zametki, 26, No. 6, 931–937 (1979).MATHMathSciNetGoogle Scholar
  40. 40.
    A. A. Lashkhi, “Projections of wreath products of Lie algebras,” Atti Accad. Nazionale dei Lincei, Roma, 69, No. 6, 313–316 (1981).Google Scholar
  41. 41.
    A. A. Lashkhi, “Projections of mixed Lie rings,” in: Universal Algebras and Applications (Warsaw, 1978), Banach Center Publ., 9, Warsaw (1982), pp. 57–66.MathSciNetGoogle Scholar
  42. 42.
    A. A. Lashkhi, “L-holomorphisms of Lie algebras,” Atti Accad. Nazionale dei Lincei, Roma, 70, No. 2, 64–68 (1982).Google Scholar
  43. 43.
    A. A. Lashkhi, “Modular Lie algebras,” Vestn. Mosk. Univ., 6, 82–83 (1983).Google Scholar
  44. 44.
    A. A. Lashkhi, Lie algebras with modular lattice of subalgebras, Preprint Freinburg Univ. (1984).Google Scholar
  45. 45.
    A. A. Lashkhi and I. A. M. Zimmermann, “Modularity and distributivity in the subideal lattice of a Lie algebra,” Rend. Sem. Mat. Univ. Padova, 73, 169–177 (1985).MATHMathSciNetGoogle Scholar
  46. 46.
    A. A. Lashkhi, “On Lie algebras with modular lattices of subalgebras,” J. Algebra, 99, No. 1, 80–88 (1986).MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    A. A. Lashkhi, “Lattices with modular identity and Lie algebras,” J. Sov. Math., 38, No. 2, 1829–1853 (1987).CrossRefGoogle Scholar
  48. 48.
    Lashkhi A. A., “The fundamental theorem of projective geometry in modules and Lie algebras,” J. Sov. Math., 42, No. 5, 1991–2008 (1988).MATHCrossRefGoogle Scholar
  49. 49.
    A. A. Lashkhi, Projective geometry of nodules and Lie algebras [in Russian], Doctoral Thesis, Tbilisi (1988).Google Scholar
  50. 50.
    A. A. Lashkhi, “Lattices of subalgebras of Lie algebras,” Bull. Georgian Acad. Sci., 143, No. 3 (1991).Google Scholar
  51. 51.
    A. A. Lashkhi, “Lattices of subalgebras of solvable Lie algebras,” in: Proc. Int. Conf. on Algebra Part 2, Novosibirsk, 69–89 (1989); Contemp. Math., 131, Part 2, Amer. Math. Soc., Providence, Rhode Island (1992).Google Scholar
  52. 52.
    A. A. Lashkhi and I. A. M. Zimmermann, “On Lie algebras with many nilpotent subalgebras,” Commun. Algebra (2005).Google Scholar
  53. 53.
    A. I. Mal’tsev, “On one general method of obtaining local theorems of groups,” Uch. Zap. Ivanovsk. Ped. Inst. [in Russian], 1, No. 1, 3–9 (1941).Google Scholar
  54. 54.
    M. Ojanguren and R. Sridharan, “A note on the fundamental theorem of projective geometry,” Comment. Math. Helv., 44, 310–315 (1969).MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    A. S. Pekelis, “Lattice isomorphisms of group pairs,” Izv. Akad. Nauk SSSR Ser. Mat., 33, 396–413 (1969).MATHMathSciNetGoogle Scholar
  56. 56.
    A. S. Pekelis, “Lattice isomorphisms of triangular pairs,” in: Proc. Riga Seminar on Algebra [in Russian], Riga (1969), pp. 165–184.Google Scholar
  57. 57.
    A. S. Pekelis, “Lattice isomorphisms of group pairs,” Uch. Zap. Ural. Gos. Univ., 7, 137–149 (1969/1970).MathSciNetGoogle Scholar
  58. 58.
    A. S. Pekelis, “The lattice properties of group pairs,” Sib. Mat. Zh., 12, 583–602 (1971).MATHMathSciNetGoogle Scholar
  59. 59.
    G. V. Pivovarova, “The special lattice isomorphism of group pairs,” in: Latvian Math. Yearbook [in Russian], 9, Zinatne, Riga (1971), pp 197–202.Google Scholar
  60. 60.
    B. I. Plotkin, Groups of Automorphisms of Algebraic Systems [in Russian], Nauka, Moscow (1966).Google Scholar
  61. 61.
    L. Ye. Sadovski, “An approximation theorem and structural isomorphisms,” Dokl. Akad. Nauk SSSR [in Russian], 161, No. 2, 300–303 (1965).MathSciNetGoogle Scholar
  62. 62.
    L. A. Simonyan, “Some questions of the theory of Lie algebra representations,” Uch. Zap. Latv. State Univ., 58, 5–20 (1964).Google Scholar
  63. 63.
    L. A. Simonyan, “On stable derivations of Lie algebras,” Izv. Akad. Nauk Latv. SSR, Phys.-Techn. Sci. Ser., 3, 67–70 (1965).Google Scholar
  64. 64.
    M. Suzuki, Structure of a Group and the Structure of Its Lattice of Subgroups, Springer-Verlag, Berlin-Göttingen-Heidelberg (1956).MATHGoogle Scholar
  65. 65.
    D. A. Towers, “Dualisms of Lie algebras,” J. Algebra, 59, No. 2, 490–495 (1979).MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    D. Towers, “On complemented Lie algebras,” J. London Math. Soc. (2), 22, No. 1, 63–65 (1980).MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    D. A. Towers, “Lattice isomorphisms of Lie algebras,” Math. Proc. Cambridge Phil. Soc., 89, No. 2, 285–292 (1981).MATHMathSciNetGoogle Scholar
  68. 68.
    D. A. Towers, “Semimodular subalgebras of a Lie algebra,” J. Algebra, 103, No. 1, 202–207 (1986).MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    V. R. Varea, “Lie algebras whose maximal subalgebras are modular,” Proc. Roy. Soc. Edinburgh Sec. A, 94, Nos. 1–2, 9–13 (1983).MATHMathSciNetGoogle Scholar
  70. 70.
    V. R. Varea, “Lie algebras none of whose Engel subalgebras are in the intermediate position,” Commun. Algebra, 15, No. 12, 2529–2543 (1987).MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    V. R. Varea, “Supersimple and upper semimodular Lie algebras,” Commun. Algebra, 23, No. 6, 2323–2330 (1995).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Georgian Technical UniversityTbilisiGeorgia

Personalised recommendations