Journal of Mathematical Sciences

, 153:454 | Cite as

Algebraic representation of mappings between submodule lattices



We show that under certain weak conditions on the module R M, every mapping
$$ f:\mathfrak{L}\left( {_R M} \right) \to \mathfrak{L}\left( {_S N} \right) $$
between the submodule lattices which preserves arbitrary joins and “disjointness” has a unique representation of the form f(u) = 〈h[ S B R × R U]〉 for all u
$$ \mathfrak{L}\left( {_R M} \right) $$
, where S B R is some bimodule and h is an R-balanced mapping. Furthermore, f is a lattice homomorphism if and only if B R is flat and the induced S-module homomorphism
$$ \bar h:_S B \otimes _R M \to _S N $$
is monic. If S N also satisfies the same weak conditions, then f is a lattice isomorphism if and only if B R is a finitely generated projective generator, S ≅ End(B R ) canonically, and
$$ \bar h:_S B \otimes _R M \to _S N $$
is an S-module isomorphism, i.e., every lattice isomorphism is induced by a Morita equivalence between R and S and a module isomorphism.


Projective Geometry Geometric Algebra Regular Ring Picard Group Lattice Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. W. Anderson and K. P. Fuller, Rings and Categories of Modules, Springer-Verlag, New York (1973).Google Scholar
  2. 2.
    E. Artin, Geometric Algebra, Interscience, New York (1957).MATHGoogle Scholar
  3. 3.
    R. Baer, Linear Algebra and Projective Geometry, Academic Press, New York (1952).MATHGoogle Scholar
  4. 4.
    C. Bartolone and F. Bartolozzi, “Topics in geometric algebra over rings,” in: Rings and Geometry, Istanbul, 353–389, (1984), NATO Adv. Sci. Inst., Ser. C, Math. Phys. Sci., 160, Reidel, Dordrecht (1985).Google Scholar
  5. 5.
    C. Bartolone and F. Di Franco, “A remark on the projectivities of the projective line over a commutative ring,” Math. Z., 169, No. 1, 23–29 (1979).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H. Bass, Algebraic K-Theory, Benjamin, New York (1958).Google Scholar
  7. 7.
    N. Bourbaki, Commutative Algebra. Chaps. 1–2. Flat Modules, Localization, Hermann, Paris (1961).Google Scholar
  8. 8.
    U. Brehm, Untermodulverbände torsionsfreier Moduln, Dissertation, Freinburg (1983/84).Google Scholar
  9. 9.
    U. Brehm, “Representation of homomorphisms between submodule lattices,” Res. Math., 12, 62–70 (1987).MATHMathSciNetGoogle Scholar
  10. 10.
    U. Brehm, M. Greferath, and S. E. Schmidt, “Projective geometry on modular lattices,” in: Handbook of Incidence Geometry (F. Buekenhout, Ed.), Amsterdam, North-Holland (1995), pp. 1115–1142.CrossRefGoogle Scholar
  11. 11.
    F. Buekenhout, Ed., Handbook of Incidence Geometry. Buildings and Foundations, North-Holland, Amsterdam (1995).MATHGoogle Scholar
  12. 12.
    F. Buekenhout and P. Cameron, “Projective and affine geometry over division rings,” in: Handbook of Incidence Geometry, North-Holland, Amsterdam (1995), pp. 27–62.CrossRefGoogle Scholar
  13. 13.
    V. P. Camillo, “Inducing lattice maps by semilinear isomorphisms,” Rocky Mount. J. Math, 14, No. 2, 475–486 (1984).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. S. Carter and A. Vogt, “Collinearity-preserving functions between Desarguesian planes,” Proc. Nat. Acad. Sci. U.S.A., 77, No. 7, 3756–3757 (1980).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    P. M. Cohn, Morita Equivalence and Duality, Queen Mary College, London (1966).Google Scholar
  16. 16.
    P. M. Cohn, Skew Field Constructions, Cambridge Univ. Press (1997).Google Scholar
  17. 17.
    J. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin-Göttingen-Heidelberg (1955).MATHGoogle Scholar
  18. 18.
    J. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin-New York (1971).MATHGoogle Scholar
  19. 19.
    K. Faltings, “Modulare Verbände mit Punktsystem,” Geom. Dedic., 4, 105–137 (1975).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    C.-A. Faure, “An elementary proof of the fundamental theorem of projective geometry,” Geom. Dedic., 90, 145–151 (2002).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    C.-A. Faure, “Morphisms of projective spaces over rings,” Adv. Geom., 4, No. 1, 19–31 (2004).MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    C.-A. Faure and A. Frölicher, “Categorical aspects in projective geometry,” Appl. Categ. Struct., 6, No. 1, 87–103 (1998).MATHCrossRefGoogle Scholar
  23. 23.
    C.-A. Faure and A. Frölicher, Eds. Modern Projective Geometry, Math. Appl., 51, Kluwer Academic, Dordrecht (2000).MATHGoogle Scholar
  24. 24.
    K. R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).MATHGoogle Scholar
  25. 25.
    A. J. Hahn, D. G. James, and B. Weisfeiler, “Homomorphisms of algebraic and classical groups: a survey,” in: Quadratic and Hermitian forms, (Hamilton, Ont.), 249–296 (1983). CMS Conf. Proc., 4, Amer. Math. Soc., Providence, Rhode Island (1984).Google Scholar
  26. 26.
    A. J. Hahn, D. G. James, and Z. X. Wan, “Classical groups and related topics,” in: Proc. China-United States Conference in honor of Luo Geng Hua held at Tsinghua University, Beijing, May, 18–23 (1987). Contemp. Math., 82, Amer. Math. Soc., Providence, Rhode Island (1989).Google Scholar
  27. 27.
    A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer-Verlag, Berlin (1989).MATHGoogle Scholar
  28. 28.
    H. Havlicek, “A generalization of Brauner’s theorem on linear mappings,” Mitt. Math. Semin. Gieen, 215, 27–41 (1994).MATHMathSciNetGoogle Scholar
  29. 29.
    H. Havlicek, “Weak linear mappings. A survey,” in: Geometrie-Tagung “107 Jahre Drehfluchtprinzip,” (O. Röschel et al. Eds.), Vorau, Österreich, 1. Juni–6. Juni 1997, Tagungsband. Vorau: TU Graz, 76–85 (1999).Google Scholar
  30. 30.
    G. Hutchinson, “On classes of lattices representable by modules,” Proc. Univ. of Houston Lattice Theory Conf., Houston, 1973.Google Scholar
  31. 31.
    D. James, W. Waterhouse, and B. Weisfeiler, “Abstract homomorphisms of algebraic groups: Problems and bibliography,” Commun. Algebra, 9, No. 1, 95–114 (1981).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    P. Kaya, P. Plaumann, and K. Strambach, “Rings and geometry,” in: Proc. NATO Adv. Stud. Inst. held in Istanbul, September 2–14, 1984, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 160, Reidel, Dordrecht (1985).Google Scholar
  33. 33.
    W. Klingenberg, “Projektive Geometrien mit Homomorphismus,” Math. Ann., 132, 180–200 (1956).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    A. A. Lashkhi, “Harmonic mappings and collineations of modules,” Soobshch. Akad. Nauk Gruz. SSR, 133, No. 3, 497–500 (1989).MATHMathSciNetGoogle Scholar
  35. 35.
    A. A. Lashkhi, “Harmonic mappings of modules,” Mat. Zametki, 47, No. 1, 161–163 (1990).MATHMathSciNetGoogle Scholar
  36. 36.
    A. Lashkhi, “Harmonic maps over rings,” Georgian Math. J., 4, No. 1, 41–64 (1997).MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    A. Lashkhi and D. Chkhatarashvili, “On the fundamental theorem of affine geometry over a ring,” Bull. Georgian Acad. Sci., 159, No. 1, 17–19 (1999).MATHMathSciNetGoogle Scholar
  38. 38.
    A. Lashkhi and T. Kvirikashvili, “Perspective maps of modules,” Bull. Georgian Acad. Sci., 155, No. 3, 328–330 (1997).MATHMathSciNetGoogle Scholar
  39. 39.
    A. Lashkhi and T. Kvirikashvili, “Perspective maps of modules,” Mat. Zametki, 4, 946–947 (2005).MathSciNetGoogle Scholar
  40. 40.
    A. Lashkhi and T. Kvirikashvili, “Affine geometry of modules over a ring with an invariant basis number,” J. Math. Sci. (to appear).Google Scholar
  41. 41.
    F. Machala, “Bemerkungen zu einem Satz von L. A. Skornjakov über projektive Abbildung von Moduln,” Mat. Časopis Sloven. Akad. Vied., 24, No. 4, 301–306 (1974).MATHMathSciNetGoogle Scholar
  42. 42.
    V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaev, “Rings of endomorphisms of modules and lattices of submodules,” Algebra. Topology. Geometry, 21, 183–254, Itogi Nauki Tekhn., Akad. Nauk SSSR, Moscow (1983).Google Scholar
  43. 43.
    B. R. McDonald, “Geometric algebra over local rings,” Pure Appl. Math., 36, Marcel Dekker, New York-Basel (1976).Google Scholar
  44. 44.
    B. R. McDonald, Linear Algebra over Commutative Rings, Marcel Dekker, New York (1984).MATHGoogle Scholar
  45. 45.
    K. Morita, “Duality of modules and its application to the theory of rings with minimum condition,” Sci. Rep. Tokyo Kyoiku Diagaku, A6, 85–142 (1958).Google Scholar
  46. 46.
    J. Von Neumann, Continuous Geometry, Princeton Univ. Press (1960).Google Scholar
  47. 47.
    M. Ojanguren and R. Sridharan, “A note on the fundamental theorem of projective geometry,” Comment. Math. Helv., 44, 310–315 (1969).MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    O. T. O’Meara, “Lectures on linear groups,” in: Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 22, Amer. Math. Soc. Providence, Rhode Island (1974).Google Scholar
  49. 49.
    P. Plaumann and K. Strambach, “Geometry—von Staudt’s point of view,” in: Proc. NATO Adv. Stud. Inst. held at Bad Windsheim, West Germany, July 21–August 1, 1980, NATO Adv. Stud. Inst. Ser. C, Math. Phys. Sci., 70, Reidel, Dordrecht-Boston-London (1981).Google Scholar
  50. 50.
    S. E. Schmidt, Grundlegungen zu einer allgemeinen affinen Geometrie, Birkhäuser, Basel (1995).MATHGoogle Scholar
  51. 51.
    S. E. Schmidt and S. Weller, “Fundamentalsatz fur affine Raume über Moduln,” Res. Math., 30, Nos. 1–2, 151–159 (1996).MATHMathSciNetGoogle Scholar
  52. 52.
    B. Sarath and K. Varadarajan, “Fundamental theorem of projective geometry,” Commun. Algebra 12, No. 8, 937–952 (1984).MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    L. A. Skornyakov, “Projective mapping of modules,” Izv. Akad Nauk USSR, Ser. Math., 24, 511–520 (1960).MATHMathSciNetGoogle Scholar
  54. 54.
    L. A. Skornyakov, Complemented Modular Lattices and Regular Rings, Oliver & and Boyd, Edinburgh (1964).MATHGoogle Scholar
  55. 55.
    W. Stephenson, Characterizations of Rings and Modules by Lattices, Ph.D. Thesis, Univ. of London (1967).Google Scholar
  56. 56.
    W. Stephenson, “Lattice isomorphisms between modules, 1. Endomorphism rings,” J. London Math. Soc. 2, No. 1, 177–183 (1960).MathSciNetGoogle Scholar
  57. 57.
    G. Törner and F. D. Veldkamp, “Literature on geometry over rings,” J. Geom., 42, Nos. 1–2, 180–200 (1991).MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    F. D. Veldkamp, “Geometry over rings,” in: Handbook of Incidence Geometry (F. Buekenhout, Ed.), North-Holland, Amsterdam (1995), pp. 1033–1084.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Fakultät Mathematik und NaturwissenschaftenFachrichtung Mathematik, Hausanschrift: WillersbauDresdenGermany

Personalised recommendations