Skip to main content
Log in

Backward stochastic partial differential equations related to utility maximization and hedging

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the utility maximization problem, the problem of minimization of the hedging error and the corresponding dual problems using dynamic programming approach. We consider an incomplete financial market model, where the dynamics of asset prices are described by an ℝd-valued continuous semimartingale. Under some regularity assumptions, we derive the backward stochastic PDEs for the value functions related to these problems, and for the primal problem, we show that the strategy is optimal if and only if the corresponding wealth process satisfies a certain forward SDE. As examples we consider the mean-variance hedging problem and the cases of power, exponential, logarithmic utilities, and corresponding dual problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Arkin and M. Saksonov, “Necessary optimality condition for stochastic differential equation,” Sov. Math. Dokl., 20, 1–5 (1979).

    MATH  Google Scholar 

  2. D. Bertsimas, L. Kogan, and A. Lo, “Hedging derivative securities and incomplete markets. An ε-arbitrage approach,” Operations Research, 49, No. 3, 372–397 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bellman, Dynamic Programming, Princeton, New Jersey (1957).

  4. J. M. Bismut, “Conjugate convex functions in optimal stochastic control,” J. Math. Anal. Appl., 44, 384–404 (1973).

    Article  MathSciNet  Google Scholar 

  5. F. Biagini, P. Guasoni, and M. Pratelli, “Mean variance hedging for stochastic volatility models,” Math. Finance, 10, No. 2, 109–123 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Black and M. Sholes, “The pricing of options and corporate liabilities,” J. Polit. Economy, 81, 637–659 (1973).

    Article  Google Scholar 

  7. R. Chitashvili, “Martingale ideology in the theory of controlled stochastic processes,” Lect. Notes Math., 1021, 73–92 (1983).

    Article  MathSciNet  Google Scholar 

  8. R. Chitashvili and M. Mania, “Generalized Itô’s formula and derivation of Bellman’s equation,” in: Stochastic Processes and Related Topics, Stochastics Monogr., Vol.10, Gordon & Breach, London (1996), pp. 1–21.

    Google Scholar 

  9. R. Chitashvili and M. Mania, “Optimal locally absolutely continuous change of measure: finite set of decisions,” Stochastics Rep., 21, 131–185 (part 1), 187–229 (part 2) (1987).

    MATH  MathSciNet  Google Scholar 

  10. R. Chitashvili and M. Mania, “On the decomposition of a maximum of semimartingales and Itô’s generalized formula,” in: New Trends in Probability and Statistics, VSP (1991), pp. 301–360.

  11. R. Chitashvili and M. Mania, “On functions transforming Wiener process into semimartingale,” Probab. Theory Related Fields, 109, 57–76 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Csiszar, “Divergence geometry of probability distributions and minimization problems,” Ann. Probab., 3, No. 1, 146–158 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. H. A. Davis, Markov Models and Optimization, Monogr. Statistics Appl. Probab., 49, Chapman & Hall, London (1993).

    MATH  Google Scholar 

  14. M. H. A. Davis and P. P. Varaiya, “Dynamic programming conditions for partially observable stochastic systems,” SIAM J. Control, 2, 226–261 (1973).

    Article  MathSciNet  Google Scholar 

  15. F. Delbaen, P. Grandits, T. Rheinländer, D. Samperi, W. Schweizer, and C. Stricker, “Exponential hedging and entropic penalties,” Math. Finance, 12, No. 2, 99–123 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Delbaen, P. Monat, W. Schachermayer, W. Schweizer, and C. Stricker, “Weighted norm inequalities and hedging in incomplete markets,” Finance Stoch., 1, No. 2, 181–227 (1997).

    Article  MATH  Google Scholar 

  17. F. Delbaen and W. Schachermayer, “Variance-optimal martingale measure for continuous processes,” Bernoulli-2, 1, 81–105 (1996).

    Article  MathSciNet  Google Scholar 

  18. F. Delbaen and W. Schachermayer, “A general version of the fundamental theorem of asset pricing,” Math. Ann., 300, 463–520 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Dellacherie and P. A. Meyer, Probabilités et Potentiel, II, Hermann, Paris (1980).

    Google Scholar 

  20. D. Duffie and H. R. Richardson, “Mean-variance hedging in continuous time,” Ann. Appl. Probab., 1, 1–15 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Doleans-Dade and P. A. Meyer, “Inegalites de normes avec poinds,” Lect. Notes Math., 721, 313–331, (1979).

    Article  MathSciNet  Google Scholar 

  22. N. El Karoui and M. C. Quenez, “Dynamic programming and pricing of contingent claims in an incomplete market,” C. R. Acad. Sci., Paris, Ser. I, 313, No. 12, 851–854 (1991).

    MATH  MathSciNet  Google Scholar 

  23. N. El Karoui and M. C. Quenez, “Dynamic programming and pricing of contingent claims in an incomplete market,” SIAM J. Control Optim., 33, No. 1, 29–66 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  24. N. El Karoui, S. Peng, and M. C. Quenez, “Backward stochastic differential equations in finance,” Math. Finance, 7, No. 1, 1–71 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  25. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Oxford (1976).

  26. R. J. Elliott, Stochastic Calculus and Applications, Springer-Verlag, New York (1982).

    MATH  Google Scholar 

  27. H. Föllmer and Yu. M. Kabanov, “Optional decomposition and Lagrange multipliers,” Finance Stoch., 2, No. 1, 69–81 (1998).

    MATH  MathSciNet  Google Scholar 

  28. H. Föllmer and M. Schweizer, “Hedging of contingent claims under incomplete information,” in: Applied Stochastic Analysis (M. H. A. Davis and R. J. Elliott, eds.), Stoch. Monogr., Vol. 5, Gordon and Breach, London (1991), pp. 389–414.

    Google Scholar 

  29. H. Föllmer and D. Sondermann, “Hedging nonredundant contingent claims,” in: Contributions to Mathematical Economics (W. Hildenbrand and A. Mas-Collel, eds.), North Holland, Amsterdam (1986), pp. 205–223.

    Google Scholar 

  30. M. Frittelli, “The minimal entropy martingale measure and the valuation problem in incomplete markets,” Math. Finance, 10, No. 1, 39–52 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  31. L. I. Gihman and A. V. Skorohod, The Theory of Random Processes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  32. I. V. Girsanov, “On transforming a certain class of stochastic processes by absolutely continuous substitution of measures,” Teor. Veroyatn. Primen., 5, 314–330 (1960).

    MathSciNet  Google Scholar 

  33. C. Gourieroux, J. P. Laurent, and H. Pham, “Mean-variance hedging and numeraire,” Math. Finance, 8, No. 3, 179–200 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  34. P. Grandits and L. Krawczyk, “Closedness of some spaces of stochastic integrals,” Lect. Notes Math., 1686, 75–87 (1998).

    MathSciNet  Google Scholar 

  35. J. M. Harrison and S. R. Pliska, “Martingales and stochastic integrals in the theory of continuous trading,” Stochastic Processes Appl., 11, 215–260 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Heath, E. Platen, and M. Schweizer, “A comparison of two quadratic approaches to hedging in incomplete markets,” Math. Finance, 11, No. 4, 385–413 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  37. C. Hipp, “Hedging general claims,” Proc. 3rd AFIR Colloq., 2, 603–613 (1993).

    Google Scholar 

  38. N. Hoffman, E. Platen, and M. Schweizer, “Option pricing under incompleteness and stochastic volatility,” Math. Finance, 2, No. 3, 153–187 (1992).

    Article  Google Scholar 

  39. J. Jacod, “Calcule stochastique et problèmes des martingales,” Lect. Notes Math., 714 (1979).

  40. I. Karatzas, J. P. Lehovsky, S. E. Shreve, and G. L. Xu, “Martingale and duality methods for utility maximization in an incomplete market,” SIAM J. Control Optim., 29, 720–730 (1991).

    Article  Google Scholar 

  41. N. Kazamaki, “Continuous exponential martingales and BMO,” Lect. Notes Math., 1579 (1994).

  42. Yu. Kabanov, “On the Pontryagin maximum principle for the linear stochastic differential equation,” in: Probabilistic Models and Control of Economical Processes, Moscow (1978).

  43. D. O. Kramkov, “Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets,” Probab. Theory Related Fields, 105, 459–479 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Kobylanski, “Backward stochastic differential equation and partial differential equations with quadratic growth,” Ann. Probab., 28, No. 2, 558–602 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  45. D. Kramkov and M. Sirbu, “On the two-times differentiability of the value functions in the problem of optimal investment in incomplete markets,” Ann. Appl. Prob. (to appear).

  46. D. Kramkov and W. Schachermayer, “The asymptotic elasticity of utility functions and optimal investment in incomplete markets,” Ann. Appl. Probab., 9, No. 9, 904–950 (1999).

    MATH  MathSciNet  Google Scholar 

  47. N. V. Krylov, Controlled Diffusion Processes, Springer-Verlag, New York (1980).

    MATH  Google Scholar 

  48. O. A. Ladizenskaia, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasi-Linear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  49. J. P. Laurent and H. Pham, “Dynamic programming and mean-variance hedging,” Finance Stoch.. 3, 83–110 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  50. N. Lazrieva and T. Toronjadze, “Itô-Ventzell’s formula for semimartingales, asymptotic properties of MLE and recursive estimation,” in: Stochastic Differential Systems. Proc. IFIP-WG 7/1 Work. Conf., Eisenach/GDR 1986, Lect. Notes Control Inf. Sci., 96, 346–355 (1987).

  51. R. Sh. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer-Verlag, Berlin (1977).

    MATH  Google Scholar 

  52. R. Sh. Liptzer and A. N. Shiryayev, Martingale Theory [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  53. M. Mania, “Semimartingale characterization of generalized derivatives,” Stochastics and Stochastic Reports, 61, 35–66 (1997).

    MATH  MathSciNet  Google Scholar 

  54. M. Mania, “A derivation of a generalized Black-Sholes equation,” Proc. Razmadze Math. Inst., 115, 121–148 (1997).

    MATH  MathSciNet  Google Scholar 

  55. M. Mania, “A general problem of an optimal equivalent change of measure and contingent claim pricing in an incomplete market,” Stochastic Process. Appl., 90, 19–42 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  56. M. Mania and M. Schweizer, “Dynamic exponential utility indifference valuation,” Ann. Appl. Probab., 15, No. 3, 2113–2143 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  57. M. Mania, M. Santacroce, and R. Tevzadze, “A semimartingale backward equation related to the p-optimal martingale measure and the minimal price of contingent claims,” in: Stoch. Processes and Related Topics, Stochastics Monogr., 12 (2002), pp. 169–202.

  58. M. Mania, M. Santacroce and R. Tevzadze, “A semimartingale BSDE related to the minimal entropy martingale measure,” Finance Stochast., 7, No. 3, 385–402 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  59. M. Mania, M. Santacroce and R. Tevzadze, “The Bellman equation related to the minimal entropy martingale measure,” Georgian Math. J., 11, No. 1, 125–135 (2004).

    MATH  MathSciNet  Google Scholar 

  60. M. Mania and R. Tevzadze, “A semimartingale backward equation and the variance optimal martingale measure under general information flow,” SIAM J. Control Optim., 42, No. 5, 1703–1726 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  61. M. Mania and R. Tevzadze, “A semimartingale Bellman equation and the variance-optimal martingale measure,” Georgian Math. J., 7, No. 4, 765–792 (2000).

    MATH  MathSciNet  Google Scholar 

  62. M. Mania and R. Tevzadze, “A unified characterization of q-optimal and minimal entropy martingale measures by semimartingale backward equations,” Georgian Math. J., 10, No. 2, 289–310 (2003).

    MATH  MathSciNet  Google Scholar 

  63. M. Mania and R. Tevzadze, “A semimartingale Bellman equation for the mean-variance hedging problem,” in: Reports on Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics, Tbilisi (2002), pp. 21–23.

    Google Scholar 

  64. M. Mania and R. Tevzadze, “Semimartingale functions of a class of diffusion processes,” Theory Probab. Appl., 45, No. 2, 337–343 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  65. M. Mania and R. Tevzadze, “A semimartingale backward equation and the variance-optimal martingale measure,” in: Abstracts of III Congr. of Georgian Mathematics, October 11–13, (2001), p. 68.

  66. M. Mania and R. Tevzadze, “Backward stochastic PDE and imperfect hedging,” Int. J. Theor. Appl. Finance, 6, No. 7, 663–692 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  67. M. Mania and R. Tevzadze, “Backward stochastic PDE and hedging in incomplete markets,” in: Proc. Razmadze Math. Inst., 13, 39–72 (2002).

    MathSciNet  Google Scholar 

  68. M. Mania and R. Tevzadze, “Semimartingale backward PDE and imperfect hedging,” in: Kolmogorov and Contemporary Mathematics, Abstracts, Moscow, June 16–21 (2003), pp. 91–92.

  69. R. C. Merton, “Theory of rational option pricing,” Bell. J. Econ. Manag. Sci., 4, 141–183 (1973).

    Article  MathSciNet  Google Scholar 

  70. P. A. Meyer, “Une cours sur les integrales stochastiques,” Lect.Notes Math., 511, 245–511 (1976).

    Article  Google Scholar 

  71. Y. Miyahara, “Canonical martingale measures of incomplete assets markets,” in: Probability Theory and Mathematical Statistics. Proc. Seventh Japan-Russia Symposium, Tokyo, World Scientific (1996), pp. 343–352.

    Google Scholar 

  72. M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, Springer-Verlag, Berlin-Heidelberg-New York (1997).

    MATH  Google Scholar 

  73. H. Pham, T. Rheinlander, and M. Schweizer, “Mean-variance hedging for continuous processes: New proofs and examples,” Finance Stoch., 2, 173–198 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  74. E. Pardoux and S. G. Peng, “Adapted solution of a backward stochastic differential equation,” Systems Control Lett., 14, 55–61 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  75. M. Reed and B. Simon, Methods of Modern Mathematical Physics [Russian translation], Mir, Moscow (1978).

    MATH  Google Scholar 

  76. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag (1999).

  77. R. Rouge and N. El Karoui, “Pricing via utility maximization and entropy,” Math. Finance, 10, No. 2, 259–276 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  78. T. Rheinländer, “Optimal martingale measures and their applications in mathematical finance,” Zur Erlangung des Akademischen Grades eines Doktors der Naturwissenschaften (1999).

  79. T. Rheinländer and M. Schweizer, “On L 2-projections on a space of stochastic integrals,” Ann. Probab., 25, 1810–1831 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  80. R. Rishel, “Necessary and sufficient dynamic programming conditions for continuous-time stochastic optimal control,” SIAM J. Control, 8, 559–571 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  81. M. Santacroce, “Semimartingale backward equation for the p-optimal martingale measure: some extreme cases,” Tech. Report, Dip. di Statistica, Probabilita’ e Statistiche Applicate, Univ. degli Studi di Roma “La Sapienza” (2001).

  82. W. Schachermayer, “A super-martingale property of the optimal portfolio process,” Finance Stoch., 7, No. 4, 433–456 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  83. M. Schäl, “On quadratic cost criteria for option hedging,” Math. Oper. Res., 19, 121–131 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  84. M. Schweizer, “Mean-variance hedging for general claims,” Ann. Appl. Probab., 2, 171–179 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  85. M. Schweizer, “Approximating random variables by stochastic integrals,” Ann. Probab., 22, No. 3, 1536–1575 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  86. M. Schweizer, “Approximation pricing and the variance optimal martingale measure,” Ann. Probab., 24, 206–236 (1996).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mania.

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 45, Martingale Theory and Its Application, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mania, M., Tevzadze, R. Backward stochastic partial differential equations related to utility maximization and hedging. J Math Sci 153, 291–380 (2008). https://doi.org/10.1007/s10958-008-9129-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9129-9

Keywords

Navigation