Journal of Mathematical Sciences

, Volume 152, Issue 6, pp 934–940 | Cite as

Measure preserving transformations of multidimensional stable Lévy processes

  • N. V. Smorodina


Let ξ(t), t ∈ [0, 1], be an α-stable Lévy process in ℝd. Denote by {ie4563-01} the measure generated by ξ in the Skorokhod space {ie4563-02}. Under some conditions on the spectral measure of the process ξ, we construct a group of {ie4563-03}-preserving transformations of {ie4563-04}. Bibliography: 12 titles.


Russia Measure Preserve Spectral Measure Configuration Space Stable Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Takahashi, “Absolute continuity of Poisson random fields,” Publ. Res. Inst. Math. Sci., 26, 629–649 (1990).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Kerstan, K. Mattes, and J. Mecke, Infinite Divisible Point Processes, Akademie-Verlag, Berlin (1978).Google Scholar
  3. 3.
    W. Linde, Infinitely Divisible and Stable Measures on Banach Spaces, Teubner, Leipzig (1983).MATHGoogle Scholar
  4. 4.
    A. V. Skorokhod, “Differentiability of measures that correspond to random processes. I,” Teor. Veroyatn. Primen., 2, 629–649 (1957).Google Scholar
  5. 5.
    A. V. Skorokhod, Studies in the Theory of Random Processes [in Russian], Kiev (1961).Google Scholar
  6. 6.
    A. V. Skorokhod, Stochastic Processes with Independent Increments [in Russian], Moscow (1986).Google Scholar
  7. 7.
    N. V. Smorodina, “Invariant and quasi-invariant transformations of measures corresponding to stable processes with independent increments,” Zap. Nauchn. Semin. POMI, 339, 135–150 (2006).MATHGoogle Scholar
  8. 8.
    J. F. C. Kingman, Poisson Processes, Oxford (1993).Google Scholar
  9. 9.
    A. G. Kurosh, Group Theory [in Russian], Moscow (1953).Google Scholar
  10. 10.
    I. M. Gel’fand, M. I. Graev, and A. M. Vershik, “Representations of the group of diffeomorphisms,” Russian Math. Surveys, 30, 3–50 (1975).MATHGoogle Scholar
  11. 11.
    A. Vershik and N. Tsilevich, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson-Dirichlet measures,” C. R. Acad. Sci. Paris, Ser. I, Math., 329, 163–168 (1999).MATHMathSciNetGoogle Scholar
  12. 12.
    P. Billingsley, Convergence of Probability Measures [Russian translation], Moscow (1977).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations