Skip to main content
Log in

The Cauchy-Dirichlet problem for the heat equation in Besov spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The solvability in anisotropic spaces \( B_{p,q}^{\tfrac{\sigma } {2},\sigma } (\Omega ^T ) \) , σ ∈ ℝ+, p, q ∈ (1, ∞), of the heat equation ut − Δu = f in ΩT ≡ (0, T) × Ω is studied under the boundary and initial conditions u = g on ST, u|t=0 = u0 in Ω, where S is the boundary of a bounded domain Ω ⊂ ℝn. The existence of a unique solution \( B_{p,q}^{\tfrac{\sigma } {2},1,\sigma + 2} (\Omega ^T ) \) of the above problem is proved under the assumptions that \( S \in C^{\sigma + 2} ,f \in B_{p,q}^{\tfrac{\sigma } {2},\sigma } (\Omega ^T ), g \in B_{p,q}^{\tfrac{\sigma } {2} + 1 - \tfrac{1} {{2P}},\sigma + 2 - \tfrac{1} {P}} (S^T ), u_0 \in B_{p,q}^{\sigma + 2 - \tfrac{2} {P}} (\Omega ) \) and under some additional conditions on the data. The existence is proved by the technique of regularizers. For this purpose the local-in-space solvability near the boundary and near an interior point of Ω is needed. To show the local-in-space existence, the definition of Besov spaces by the dyadic decomposition of a partition of unity is used. This enables us to get an appropriate estimate in a new and promising way without applying either the potential technique or the resolvent estimates or the interpolation. Bibliography: 26 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Agranovich and M. I. Vishik, “Elliptic problems with parameter and parabolic problems of general type,” Usp. Mat. Nauk, 19, 3 (117), 53–161 (1964).

    MATH  Google Scholar 

  2. W. Alame, “On the existence of solutions for the nonstationary Stokes system with slip boundary conditions in general Sobolev-Slobodetskii and Besov spaces, regularity and other aspects of the Navier-Stokes equations, ” Banach Center Publ., 70, 21–49 (2005).

    Article  MathSciNet  Google Scholar 

  3. H. Amann, “Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems,” Diff. Int. Eqs., 3(1), 13–75 (1990).

    MATH  MathSciNet  Google Scholar 

  4. H. Amann, Linear and Quasilinear Parabolic Problems, Vol. I, Birkhäuser Verlag (1995).

  5. H. Amann, “Elliptic operators with infinite-dimensional state spaces,” J. Evol. Eq., 1, 143–188 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  6. O. V. Besov, V. P. Il’in, and S. M. Nikolskij, Integral Representation of Functions and Imbedding Theorems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  7. M. Burnat and W. M. Zajaczkowski, “On local motion of a compressible barotropic viscous fluid with the boundary slip condition,” Topol. Meth. Nonlin. Anal., 10, 195–223 (1997).

    MATH  MathSciNet  Google Scholar 

  8. R. Danchin, “Global existence in critical spaces for flows of compressible viscous and heat-conductive gases,” Arch. Rat. Mech. Anal., 160, 1–39 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Danchin, “On the uniqueness in critical spaces for compressible Navier-Stokes equations,” No. DEA, 12, 111–128 (2005).

    MATH  MathSciNet  Google Scholar 

  10. G. Grubb, “Functional calculus of pseudodifferential boundary problems,” Progr. Math., 65, Birkhauser (1996).

  11. G. Grubb and V. A. Solonnikov, “Solution of parabolic pseudo-differential initial-boundary value problems,” J. Diff. Eqs., 87, 256–304 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Grubb and N. J. Kokholm, “A global calculus of parameter-dependent pseudodifferential boundary problems in L p Sobolev spaces,” Acta Math., 171, 165–229 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Grubb, “Parameter-elliptic and parabolic pseudodifferential boundary problems in global L p Sobolev spaces,” Math. Zeitschrift, 218, 43–90 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Grubb and V. A. Solonnikov, “Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods,” Math. Scand., 69, 217–290 (1991).

    MATH  MathSciNet  Google Scholar 

  15. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).

    MATH  Google Scholar 

  16. J. L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Applications, Vol. 1 and 2, Springer Verlag (1972).

  17. S. M. Nikolskij, Approximation of Functions with many Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  18. R. Paley and N. Wiener, Fourier Transforms in the Complex Domain, New York (1934).

  19. V. A. Solonnikov, “A priori estimates for linear parabolic equations of the second order,” Tr. Steklov Mat. Inst., 70, 133–212 (1964).

    MATH  MathSciNet  Google Scholar 

  20. V. A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general type,” Tr. Steklov Mat. Inst., 83 (1965).

  21. V. A. Solonnikov, “An initial boundary-value problem for a Stokes system that arises in the study of free boundary problem,” Tr. Steklov Mat. Inst., 188, 150–188 (1990).

    MathSciNet  Google Scholar 

  22. H. Triebel, Interpolation Theory, Function spaces, and Differential Operators, North Holland, Amsterdam (1978).

    Google Scholar 

  23. H. Triebel, Theory of Function Spaces, Akad. Verlagsgesellschaft, Leipzig (1983).

    Google Scholar 

  24. P. Weidemaier, “Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed L p-norm,” Electr. Res. Announ. Amer. Math. Soc., 8, 47–51 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Weidemaier, “Existence results in L pL q spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions,” Pitman Research Notes, 384, 189–200 (1998).

    MathSciNet  Google Scholar 

  26. Y. Yamamoto, “Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time,” J. Math. Kyoto Univ., 38, 2, 201–227 (1998).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zadrzyńska.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 348, 2007, pp. 40–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadrzyńska, E., Zajaczkowski, W.M. The Cauchy-Dirichlet problem for the heat equation in Besov spaces. J Math Sci 152, 638–673 (2008). https://doi.org/10.1007/s10958-008-9094-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9094-3

Keywords

Navigation