Journal of Mathematical Sciences

, Volume 152, Issue 2, pp 155–190 | Cite as

Elementary equivalence of Chevalley groups over fields

  • E. I. Bunina


It is proved that (elementary) Chevalley groups G π(Φ,K) and G π′(Φ′,K′) (or E π(Φ,K) and E π′(Φ′,K′)) over infinite fields K and K′ of characteristic different from 2, with weight lattices Λ and Λ′, respectively, are elementarily equivalent if and only if the root systems Φ and Φ′ are isomorphic, the fields K and K′ are elementarily equivalent, and the lattices Λ and Λ′ coincide.


Weyl Group Simple Root Chevalley Group Weight Lattice Adjoint Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Abe, “Chevalley groups over local rings,” Tôhoku Math. J., 21, No. 3, 474–494 (1969).MATHCrossRefGoogle Scholar
  2. 2.
    E. Abe, “Whitehead groups of Chevalley groups over Laurent polynomial rings,” Comm. Algebra, 11, No. 12, 1271–1308 (1983).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Abe, Whitehead Groups of Chevalley Groups over Laurent Polynomial Rings, Preprint, Univ. Tsukuba (1988).Google Scholar
  4. 4.
    E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” in: Algebraic K-Theory and Algebraic Number Theory. Proc. Semin., Honolulu/Hawaii 1987, Contemp. Math., Vol. 83, Amer. Math. Soc. (1989), pp. 1–17.Google Scholar
  5. 5.
    E. Abe, “Automorphisms of Chevalley groups over commutative rings,” Algebra Analiz, 5, No. 3, 74–90 (1993).Google Scholar
  6. 6.
    E. Abe and J. Hurley, “Centers of Chevalley groups over commutative rings,” Comm. Algebra, 16, No. 1, 57–74 (1988).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2),” Inst. Hautes Études Sci. Publ. Math., No. 33, 59–137 (1967).Google Scholar
  9. 9.
    C. I. Beidar and A. V. Mikhalev, “On Malcev’s theorem on elementary equivalence of linear groups,” Contemp. Math., 131, 29–35 (1992).MathSciNetGoogle Scholar
  10. 10.
    A. Borel, “Properties and linear representations of Chevalley groups,” in: Semin. Algebr. Groups Related Finite Groups, Princeton 1968/69, Lect. Notes Math., Vol. 131, Springer, Berlin (1970), pp. 1–55.CrossRefGoogle Scholar
  11. 11.
    N. Bourbaki, Groupes et Algébres de Lie, Hermann (1968).Google Scholar
  12. 12.
    E. I. Bunina, “Elementary equivalence of unitary linear groups over rings and skewfields,” Russ. Math. Surv., 53, No. 2, 137–138 (1998).CrossRefMathSciNetGoogle Scholar
  13. 13.
    E. I. Bunina, “Elementary equivalence of Chevalley groups,” Russ. Math. Surv., 56, No. 1, 157–158 (2001).CrossRefMathSciNetGoogle Scholar
  14. 14.
    E. I. Bunina, “Chevalley groups over fields and their elementary properties,” Russ. Math. Surv., 59, No. 5, 952–953 (2004).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    E. I. Bunina and A. V. Mikhalev, “Combinatorial and logical aspects of linear groups and Chevalley groups,” Acta Appl. Math., 85, Nos. 1–3, 57–74 (2005).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam; American Elsevier, New York (1973).MATHGoogle Scholar
  17. 17.
    C. Chevalley, “Certains schémas de groupes semi-simples,” Sem. Bourbaki, 219, 1–16 (1960–1961).Google Scholar
  18. 18.
    P. Cohn, “On the structure of the GL2 of a ring,” Inst. Hautes Études Sci. Publ. Math., No. 30, 365–413 (1966).Google Scholar
  19. 19.
    D. L. Costa, “Zero-dimensionality and the GE2 of polynomial rings,” J. Pure Appl. Algebra, 50, 223–229 (1988).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Ju. Golubkov, The Prime Radical of Classical Groups over Associative Rings [in Russian], Ph.D. Thesis, Moscow State University (2001).Google Scholar
  21. 21.
    F. Grünewald, J. Mennicke, and L. N. Vaserstein, “On symplectic groups over polynomial rings,” Math. Z., 206, No. 1, 35–56 (1991).CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York (1978).MATHGoogle Scholar
  23. 23.
    V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring,” Math. USSR Sb., 34, 655–669 (1978).CrossRefGoogle Scholar
  24. 24.
    V. I. Kopeiko, “Unitary and orthogonal groups over rings with involution,” in: Algebra and Discrete Mathematics [in Russian], Kalmyk State University, Elista (1985), pp. 3–14.Google Scholar
  25. 25.
    A. I. Maltsev, “On elementary properties of linear groups,” in: Problems of Mathematics and Mechanics [in Russian], Novosibirsk (1961), pp. 110–132.Google Scholar
  26. 26.
    H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples deployés,” Ann. Sci. École Norm. Sup., 4eme ser., 2, 1–62 (1969).MATHGoogle Scholar
  27. 27.
    M. M. Postnikov, Lectures in Geometry. Lie Groups and Lie Algebras. Semester V [in Russian], Nauka, Moscow (1982).Google Scholar
  28. 28.
    M. R. Stein, “Surjective stability in dimension 0 for K 2 and related functors,” Trans. Amer. Math. Soc., 178, No. 1, 165–191 (1973).MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    R. Steinberg, Lectures on Chevalley Groups, Yale University (1967).Google Scholar
  30. 30.
    A. A. Suslin, “On the structure of the special linear group over polynomial rings,” Math. USSR Izv., 11, No. 2, 221–238 (1977).MATHCrossRefGoogle Scholar
  31. 31.
    A. A. Suslin, “On a theorem of Cohn,” J. Sov. Math., 17, No. 2, 1801–1803 (1981).MATHCrossRefGoogle Scholar
  32. 32.
    A. A. Suslin and V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings,” J. Sov. Math., 20, No. 6, 2665–2691 (1982).MATHCrossRefGoogle Scholar
  33. 33.
    R. Swan, “Generators and relations for certain special linear groups,” Adv. Math., 6, 1–77 (1971).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    N. A. Vavilov and E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Appl. Math., 45, 73–113 (1996).MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    T. Vorst, “The general linear group of polynomial rings over regular rings,” Comm. Algebra, 9, No. 5, 499–509 (1981).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations