Journal of Mathematical Sciences

, Volume 150, Issue 3, pp 2115–2122 | Cite as

Mean values connected with the Dedekind zeta function



For a cubic extension K3/ℚ, which is not normal, new results on the behavior of mean values of the Dedekind zeta function of the field K3 in the critical strip are obtained.

Let M(m) denote the number of integral ideals of the field K3 of norm m. For the sums
$$\sum\limits_{m \leqslant x} {M(m)^2 } and \sum\limits_{m \leqslant x} {M(m)^3 } $$
asymptotic formulas are derived. Previously, only upper bounds for these sums were known. Bibliography: 23 titles.


Russia Zeta Function Asymptotic Formula Integral Ideal Critical Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Algebraic Number Theory [Russian translation], J. W. S. Cussels and A. Fröhlich (eds.), Mir, Moscow (1969).Google Scholar
  2. 2.
    H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, New York etc. (1978).Google Scholar
  3. 3.
    P. Deligne and J.-P. Serre, “Formes modulaires poids 1,” Ann. Sci. École Norm. Sup., Sér. 4, 7, 507–530 (1974).MATHMathSciNetGoogle Scholar
  4. 4.
    R. M. Kaufman, “A. F. Lavrik’s truncated equations,” Zap. Nauchn. Semin. LOMI, 76, 124–158 (1978).MathSciNetMATHGoogle Scholar
  5. 5.
    R. M. Kaufman, “Estimation of the Hecke L-functions on the critical line,” Zap. Nauchn. Semin. LOMI, 91, 40–51 (1979).MathSciNetMATHGoogle Scholar
  6. 6.
    D. R. Heath-Brown, “The growth rate of the Dedekind zeta-function on the critical line,” Acta Arithm., 49, 323–339 (1988).MathSciNetMATHGoogle Scholar
  7. 7.
    K. Chandrasekharan and R. Narasimhan, “The approximate functional equation for a class of zeta-functions,” Math. Ann., 152, 30–64 (1963).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Chandrasekharan and A. Good, “On the number of integral ideals in Galois extensions,” Monatsh. Math., 95, 99–109 (1983).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. N. Huxley, “Exponential sums and the Riemann zeta function V,” Proc. London Math. Soc., 90, 1–41 (2005).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. S. Yoganandra, “Transformation formula for exponential sums involving Fourier coefficients modular forms,” Proc. Indian Acad. Sci. (Math. Sci.), 103, No. 1, 1–25 (1993).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind,” Comment. Math. Helvet., 50, 327–361 (1975).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Jutila, Lectures on a Method in the Theory of Exponential Sums, Bombay (1987).Google Scholar
  13. 13.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, New York (1986).Google Scholar
  14. 14.
    A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms,” in: Proc. Amalfi Conference on Analytic Number Theory (Maiori, 1989), Salerno (1992), pp. 231–246.Google Scholar
  15. 15.
    K. Matsumoto, “Lifting and mean value theorems for automorphic L-functions,” Proc. London Math. Soc., 90, 297–320 (2005).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Chandrasekharan and R. Narasimhan, “On the mean value of the error of a class of arithmetical functions,” Acta Math., 112, 41–67 (1961).CrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves,” Nagoya Math. J., 98, 109–115 (1985).MATHMathSciNetGoogle Scholar
  18. 18.
    H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS, Providence, Rhode Island (2004).MATHGoogle Scholar
  19. 19.
    A. Sankaranarayanan, “Fundamental properties of symmetric square L-functions. I,” Illinois J. Math., 46, 23–43 (2002).MATHMathSciNetGoogle Scholar
  20. 20.
    P. B. Garrett, “Decomposition of Eisenstein series: Rankin triple product,” Ann. Math., 125, 209–235 (1987).CrossRefMathSciNetGoogle Scholar
  21. 21.
    O. M. Fomenko, “Fourier coefficients of cusp forms and automorphic L-functions,” Zap. Nauchn. Semin. POMI, 237, 194–226 (1997).Google Scholar
  22. 22.
    C. J. Moreno and F. Shahidi, “The L-function L 3(s, πΔ) is entire,” Invent. Math., 79, 247–251 (1985).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    H. M. Kim and F. Shahidi, “Symmetric cube L-functions for GL 2 are entire,” Ann. Math., 150, 645–662 (1999).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.St.Petersburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations