Advertisement

Journal of Mathematical Sciences

, Volume 147, Issue 6, pp 7145–7154 | Cite as

Heegaard-Floer homology of a link with trivial component added

  • M. V. Karev
Article
  • 30 Downloads

Abstract

In this paper, we prove a theorem that allows one to evaluate the Heegaard-Floer homology of a link with trivial component added through the Heegaard-Floer homology of the initial link. Bibliography: 8 titles.

Keywords

Short Exact Sequence Vertical Circle Floer Homology Horizontal Circle Oriented Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Baldwin and W. D. Gillam, “Computations of Heegaard-Floer knot homology,” Preprint, arXiv: math.GT/0610167.Google Scholar
  2. 2.
    P. R. Cromwell, “Embedding knots and links in an open book. I. Basic properties,” Topology Appl., 64,No. 1, 37–58 (1995).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. Dynnikov, “Arc presentation of links: monotonic simplification,” Fund. Math., 190, 29–67 (2006); arXiv: math.GT/0208153.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Manolescu, P. S. Ozsvàth, and S. Sarkar, “A combinatorial description of knot Floer homology,” Preprint, arXiv:math.GT/0607691.Google Scholar
  5. 5.
    C. Manolescu, P. S. Ozsvàth, Z. Szabò, and D. P. Thurston, “On combinatorial link Floer homology,” Preprint, arXiv:math.GT/0610559.Google Scholar
  6. 6.
    P. S. Ozvàth and Z. Szabò, “Holomorphic disks and topological invariants for closed 3-manifolds,” Ann. Math. (2), 159,No. 3, 1027–1158 (2004); arXiv:math.SG/0101206.Google Scholar
  7. 7.
    P. S. Ozvàth and Z. Szabò, “Holomorphic discs and knot invariants,” Adv. Math., 186,No. 1, 58–116 (2004); arXiv:math.GT/0209056.CrossRefMathSciNetGoogle Scholar
  8. 8.
    J. A. Rasmussen, “Floer homology and knot complement,” Ph. D. Thesis, Harvard University (2003); arXiv: math.GT/0306378.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations