Advertisement

Journal of Mathematical Sciences

, Volume 147, Issue 5, pp 7114–7128 | Cite as

The Euler structure and the Gysin homomorphism in oriented homology theories

  • A. A. Solynin
Article
  • 25 Downloads

Abstract

The homological self-intersection formula, the Grothendieck type formula, and the excess formula are proved for oriented homology theories. Bibliography: 8 titles.

Keywords

Vector Bundle Line Bundle Normal Bundle Short Exact Sequence Smooth Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York (1977).MATHGoogle Scholar
  2. 2.
    J. Jouanolou, “Une suite exacte de Mayer-Vietoris en K-théorie algebrique,” Lect. Notes Math., 341 (1973).Google Scholar
  3. 3.
    I. Panin, “Push-forwards in oriented cohomology theories of algebraic varieties. II”, Preprint POMI, 17 (2002).Google Scholar
  4. 4.
    I. Panin, “Riemann-Roch theorem for oriented cohomology,” http://www.math.uiuc.edu/K-theory/0107 (2002).
  5. 5.
    K. Pimenov, “Traces in oriented homology theories of algebraic varieties,” http://www.math.uiuc.edu/K-theory (2003).
  6. 6.
    I. Panin and A. Smirnov, “Push-forwards in oriented cohomology theories of algebraic varieties,” http://www.math.uiuc.edu/K-theory/0459 (2000).
  7. 7.
    I. Panin and S. Yagunov, “Rigidity for orientable functors,” MPI-preprint (2000).Google Scholar
  8. 8.
    A. A. Solynin, “The Gysin homomorphism in extraordinary cohomology theories,” Algebra Analiz (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. A. Solynin
    • 1
  1. 1.St. Petersburg State Electrotechnical UniversitySt. PetersburgRussia

Personalised recommendations