Journal of Mathematical Sciences

, Volume 147, Issue 1, pp 6498–6506 | Cite as

The asymptotic behavior of the discrete spectrum generated by the radial confluent Heun equation with close singularities

  • S. Yu. Slavyanov
  • N. N. Igotti


Against the background of one of the authors’ (S. Yu. Slavyanov’s) reminiscences of A. A. Bolibrukh, the asymptotic behavior of the spectral curves generated by the boundary-value problem for the confluent Heun equation (that is, an equation with two regular and one irregular singularity) is considered. The spectral curves are constructed for small values of one parameter (the distance between the regular singular points) depending on another parameter, which has the meaning of total charge in physics.


Singular Point Principal Term Quantum Variable Hypergeometric Equation Regular Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. I. Abramov and V. V. Gusev, J. Phys. B, 25, 2445–2457 (1992).CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. I. Abramov, A. Yu. Kazakov, I. I. Ponomarev, S. Yu. Slavyanov, and I. N. Somov, J. Phys. B, 12, 1979.Google Scholar
  3. 3.
    D. I. Abramov and S. Yu. Slavyanov, J. Phys. B: Atom. Molec. Phys., 11, 2229–2241 (1978).CrossRefGoogle Scholar
  4. 4.
    Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, Eds.), Dover, New York (1965).Google Scholar
  5. 5.
    I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions [in Russian], Nauka, Moscow (1976).Google Scholar
  6. 6.
    E. W. Leaver, J. Math. Phys., 27, No. 5, 1238–1265 (1986).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    W. H. Press and S. A. Teukolsky, Astrophys. J., 185, 649–673 (1973).CrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Analysis of Singularities [in Russian], St. Petersburg (2002).Google Scholar
  9. 9.
    D. Schmidt, J. Reine Angew. Math., 309, 127–148 (1979).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. Yu. Slavyanov
  • N. N. Igotti

There are no affiliations available

Personalised recommendations