Skip to main content
Log in

Unitary representations and modular actions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We call a measure-preserving action of a countable discrete group on a standard probability space tempered if the associated Koopman representation restricted to the orthogonal complement to the constant functions is weakly contained in the regular representation. Extending a result of Hjorth, we show that every tempered action is antimodular, i.e., in a precise sense “orthogonal” to any Borel action of a countable group by automorphisms on a countable rooted tree. We also study tempered actions of countable groups by automorphisms on compact metrizable groups, where it turns out that this notion has several ergodic theoretic reformulations and fits naturally in a hierarchy of strong ergodicity properties strictly between ergodicity and strong mixing. Bibliography:s 25 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bekka, P. de la Harpe, and A. Valette, “Kazhdan’s property (T),” Preprint (2002).

  2. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Math. Soc. Lect. Notes Series, 269, Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  3. V. Bergelson and J. Rosenblatt, “Mixing actions of groups. III,” J. Math., 32, No. 1, 65–80 (1988).

    MATH  MathSciNet  Google Scholar 

  4. M. Burger and P. de la Harpe, “Constructing irreducible representations of discrete groups,” Proc. Ind. Acad. Sci. (Math. Sci.), 107, No. 3, 223–235 (1997).

    MATH  Google Scholar 

  5. P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette, Groups With the Haagerup Property, Progress Math., 197, Birkhäuser Verlag, Basel (2001).

    MATH  Google Scholar 

  6. M. Cowling, U. Haagerup, and R. Howe, “Almost L 2 matrix coefficients,” J. Reine Angew. Math., 387, 97–110 (1988).

    MATH  MathSciNet  Google Scholar 

  7. J. Dixmier, C*-Algebras, North Holland, Amsterdam-New York-Oxford (1977).

    MATH  Google Scholar 

  8. G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, Florida (1995).

    MATH  Google Scholar 

  9. H. Furstenberg and B. Weiss, “The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems,” Lect. Notes Math., 668, 127–132 (1978).

    Article  MathSciNet  Google Scholar 

  10. U. Haagerup, “An example of a nonnuclear C*-algebra which has the metric approximation property,” Invent. Math., 50, No. 3, 279–293 (1978/79).

    Article  MathSciNet  Google Scholar 

  11. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Berlin-New York (1979).

    MATH  Google Scholar 

  12. G. Hjorth, “A converse to Dye’s theorem,” Trans. Amer. Math. Soc., 357, No. 8, 3083–3103 (2002).

    Article  MathSciNet  Google Scholar 

  13. G. Hjorth and A. S. Kechris, Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations, Mem. Amer. Math. Soc., 177, No. 833 (2005).

  14. S. Jackson, A. S. Kechris, and A. Louveau, “Countable Borel equivalence relation,” J. Math. Logic, 2, No. 1, 1–80 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Jones and K. Schmidt, “Asymptotically invariant sequences and approximate finiteness,” Amer. J. Math, 109, 91–114 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Kitchens and K. Schmidt, “Automorphisms of compact groups,” Ergodic Theory Dynam. Systems, 9, 691–735 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Knapp, Representation Theory of Semisimple Groups, Princeton Univ. Press, Princeton, New Jersey (1986).

    MATH  Google Scholar 

  18. A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser Verlag, Basel (1994).

    MATH  Google Scholar 

  19. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-New York (1977).

    MATH  Google Scholar 

  20. K. Schmidt, “Asymptotic properties of unitary representations and mixing,” Proc. London Math. Soc., 48, No. 3, 445–460 (1925).

    Article  Google Scholar 

  21. K. Schmidt, Dynamical Systems of Algebraic Origin, Progress Math., 128, Birkhäuser Verlag, Basel (1995).

    MATH  Google Scholar 

  22. K. Schmidt and P. Walters, “Mildly mixing actions of locally compact groups,” Proc. London Math. Soc., 45, 506–518 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Thomas, “Superrigidity and countable Borel equivalence relations.” Ann. Pure Appl. Logic, 120, 237–262 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, Cambrigde (1985).

    MATH  Google Scholar 

  25. R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser Verlag, Basel (1984).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Anatoly Vershik on the occasion of his 70th birthday

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 326, 2005, pp. 97–144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kechris, A.S. Unitary representations and modular actions. J Math Sci 140, 398–425 (2007). https://doi.org/10.1007/s10958-007-0449-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0449-y

Keywords

Navigation