Advertisement

Journal of Mathematical Sciences

, Volume 146, Issue 3, pp 5911–5919 | Cite as

Accuracy analysis of airborne gravity when gravimeter parameters are identified in flight

  • Yu. V. Bolotin
  • M. Yu. Popelensky
Article

Abstract

In airborne gravimetry the data received from an airborne survey system is used to obtain the specific gravity along the aircraft path and to construct maps of the gravity anomaly. The quality of the maps depends largely on both the instrument noise and modeling errors. The paper discusses the errors in the estimated gravity caused by imperfect calibration of the gravimeter and how to calibrate the instrument using the survey flights data and the gravity maps.

Keywords

Gravity Anomaly Normal Gravity Airborne Gravity Integrate Navigation System Airborne Gravimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Alexandrov, V. G. Boltyansky, S. S. Lemak, N. A. Parusnikov, and V. M. Tihomirov, Optimization of Dynamics of Controlled Systems [in Russian], Izd. Mosk. Univ., Moscow (2000).Google Scholar
  2. 2.
    V. N. Berzhitsky, Yu. V. Bolotin, A. A. Golovan, V. N. Iljin, N. A. Parusnikov, Yu. L. Smoller, and S. Sh. Yurist, GT-1A Inertial Gravimeter System. Results of Flight Tests, Publishing House of the Center for Applied Research, Moscow State University, Moscow (2001).Google Scholar
  3. 3.
    V. N. Berzhitsky, V. N. Iljin, E. B. Saveliev, Yu. L. Smoller, S. Sh. Yurist, Yu. V. Bolotin, A. A. Golovan, N. A. Parusnikov, G. V. Popov, M. V. Chichinadze, and N. A. Parusnikov, “GT-1A inertial gravimeter system design consideration and results of flight tests,” in: Proc. 9th Saint Petersburg Int. Conf. on Integrated Navigation Systems. Russia, St. Petersburg, May 27–29, 2002.Google Scholar
  4. 4.
    Yu. V. Bolotin, A. A. Golovan, P. A. Kruchinin, N. A. Parusnikov, V. V. Tihomirov, and S. A. Trubnikov, “The problem of aviation gravimetry. Some results of tests,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 36–41 (1999).Google Scholar
  5. 5.
    Yu. V. Bolotin, A. A. Golovan, and N. A. Parusnikov, The Equations of Airborne Gravimetry. Algorithms and Results of Tests, Publishing House of the Center for Applied Research, Moscow (2002).Google Scholar
  6. 6.
    Yu. V. Bolotin and M. Yu. Popelensky, “The analysis of accuracy of airborne gravimetry with stochastic models,” Aerokosmicheskoe Priborostroenie, 4, 42–48 (2003).Google Scholar
  7. 7.
    E. A. Mudrecova and K. E. Veselov, eds., Gravimetry: A handbook in Geophysics [in Russian], 2nd ed., Nedra, Moscow (1990).Google Scholar
  8. 8.
    O. A. Stepanov, B. A. Blazhnov, and D. A. Koshaev, “The efficiency of using velocity and coordinate satellite measurements in determining gravity aboard an aircraft,” Proc. 9th Saint-Petersburg Int. Conf. on Integrated Navigation Systems. Russia, St. Petersburg, May 27–29, 2002.Google Scholar
  9. 9.
    W. Torge, Gravimetry, Walter de Gruyter, Berlin (1989).Google Scholar
  10. 10.
    N. B. Vavilova, A. A. Golovan, N. A. Parusnikov, and S. A. Trubnikov, Mathematical Models and Algorithms of Processing of Measurements of Satellite Navigating System GPS. A Standard Mode [in Russian], Publishing House of the Center for Applied Research, Moscow State University, Moscow (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Faculty of Mathematics and MechanicsLomonosov Moscow State UniversityRussia

Personalised recommendations