Journal of Mathematical Sciences

, Volume 145, Issue 2, pp 4923–4930 | Cite as

Minimum distance estimates

  • V. N. Solev


In the paper, we consider the estimation problem for an unknown density on independent observations. We use the minimum distance estimation method. It is shown that the accuracy of estimation is connected with the rate of increase of the entropy of the parametrical set. Bibliography: 9 titles.


Entropy Minimum Distance Unit Ball Convex Body Polar Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Kantorovich, “On the translation of masses,” Dokl. Akad. Nauk SSSR, 37, 227–229 (1942).Google Scholar
  2. 2.
    L. V. Kantorovich and G. Sh. Rubinstein, “The space of totally additive functions,” Vestn. Leningr. Univ., 13, No. 7, 52–59 (1958).Google Scholar
  3. 3.
    A. N. Kolmogorov and V. M. Tikhomirov, “The epsilon-entropy and epsilon-capacity of sets in functional spaces,” Usp. Mat. Nauk, 86, 3–86 (1959).Google Scholar
  4. 4.
    L. Devroye and G. Lugoshi, Combinatorial Methods in Density Estimation, Springer-Verlag, New York (2001).MATHGoogle Scholar
  5. 5.
    P. Massart, “Some applications of concentration inequality,” Annales de la Faculté des Science de Toulouse, 6 serie, 9, 245–303 (2000).MATHGoogle Scholar
  6. 6.
    L. Birgé, “On estimating of a density using Hellinger distance and some others strange facts,” Probab. Th. Rel. Fields, 71, 271–293 (1993).CrossRefGoogle Scholar
  7. 7.
    P. Massart, Concentration Inequality and Model Selection, Ecole d'Eté de Probabilités de Saint-Flour XXXIII-2003, Springer-Verlag, New York (2003).Google Scholar
  8. 8.
    S. Artstein, V. D. Milman, and S. J. Szarek, “Duality of metric entropy” (to appear in Ann. Math.).Google Scholar
  9. 9.
    S. McDiarmid, “On the method of bounded differences,” in: Surveys in Combinatorics, Cambridge University Press, (1989), pp. 148–188.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. N. Solev
    • 1
  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations