Advertisement

Journal of Mathematical Sciences

, Volume 144, Issue 3, pp 4031–4110 | Cite as

Covering dimension of topological products

  • K. L. Kozlov
  • B. A. Pasynkov
Article

Abstract

The first part of the paper is concerned with conditions under which the inequality dim X × Y ≤ dim X + dim Y and similar inequalities for infinite topological products hold. The second part contains examples of spaces such that the sums of their dimensions are smaller than the dimensions of their products.

Keywords

Product Space Open Cover Topological Product Metrizable Space Countable Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory, Moscow, Nauka (1973).Google Scholar
  2. 2.
    P. S. Aleksandrov and I. V. Proskuryakov, “On reducible sets,” Izv. Akad. Nauk SSSR, Ser. Mat., 5, No. 3, 217–224 (1941).MATHGoogle Scholar
  3. 3.
    W. G. Bade, “Two properties of the Sorgenfrey plane,” Pac. J. Math., 51, No. 2, 349–354 (1974).MATHMathSciNetGoogle Scholar
  4. 4.
    R. L. Blair, “Spaces in which special sets are z-embedded,” Can J. Math., 28, No. 4, 673–690 (1976).MATHMathSciNetGoogle Scholar
  5. 5.
    M. G. Charalambous, “The dimension of inverse limits,” Proc. Amer. Math. Soc., 58, No. 2, 289–295 (1976).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. G. Charalambous, “An example concerning inverse limit sequences of normal spaces,” Proc. Amer. Math. Soc., 78, No. 4, 605–607 (1980).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. G. Charalambous, “The dimension of inverse limit and N-compact spaces,” Proc. Amer. Math. Soc., 85, No. 4, 648–652 (1982).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. G. Charalambous, “Further theory and applications of covering dimension of uniform spaces,” Czech. Math. J., 41, No. 3, 378–394 (1991).MathSciNetGoogle Scholar
  9. 9.
    A. Ch. Chigogidze, “On some questions in dimension theory,” Topology, Colloq. Math. Soc. Ja. Bolyai, 23, 273–286 (1980).MathSciNetGoogle Scholar
  10. 10.
    A. Ch. Chigogidze, “On the dimension of increments of Tychonoff spaces,” Fund. Math., 111, No. 1, 25–36 (1981).MATHMathSciNetGoogle Scholar
  11. 11.
    A. Ch. Chigogidze, “Zero-dimensional open mappings which increase dimension,” Comment. Math. Univ. Carolinae, 24, No. 4, 571–579 (1983).MATHMathSciNetGoogle Scholar
  12. 12.
    C. H. Dowker, “Inductive dimension of completely normal spaces,” Quart. J. Math. Oxford, Ser 2, 4, No. 16, 267–281 (1953).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. van Douwen, “A technique for constructing honest locally compact submetrizable examples,” in: Topology Appl., 47, No. 3, 179–201 (1992).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    E. van Douwen, “Mild infinite dimensionality of βX and βX / X for metrizable X,” Topology Appl., 51, No. 2, 93–108 (1993).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Engelking, “On functions defined on Cartesian products,” Fund. Math., 59, No. 2, 221–231 (1966).MATHMathSciNetGoogle Scholar
  16. 16.
    R. Engelking, General Topology, PWN, Warsaw (1977).MATHGoogle Scholar
  17. 17.
    R. Engelking, “Theory of dimensions: Finite and infinite,” Sigma Ser. Pure Math., 10, Heldermann Verlag (1995).Google Scholar
  18. 18.
    R. Engelking and E. Pol, “Countable-dimensional spaces,” Dissert. Math., 216, 1–45 (1983).MathSciNetGoogle Scholar
  19. 19.
    V. V. Fedorchuk, “On the dimension of hereditarily normal spaces,” Proc. London Math. Soc., 36, No. 3, 163–175 (1978).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. V. Filippov, “On the dimension of normal spaces,” Dokl. Akad. Nauk SSSR, 209, No. 4, 805–807 (1973).MathSciNetGoogle Scholar
  21. 21.
    V. V. Filippov, “Abstracts of papers,” in: Int. Topological Conference, Moscow (1980), p. 90.Google Scholar
  22. 22.
    V. V. Filippov, “On the dimension of topological products,” Fund. Math., 106, No. 3, 181–212 (1980).MATHMathSciNetGoogle Scholar
  23. 23.
    V. V. Filippov, “Normally posed subsets,” Tr. Mat. Inst. Steklova, 154, 239–251 (1983).MATHGoogle Scholar
  24. 24.
    A. A. Fora, “On the covering dimension of subspaces of products of Sorgenfrey lines,” Proc. Amer. Math. Soc., 72, No. 3, 601–606 (1978).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    A. A. Fora, “The covering dimension of product of generalized Sorgenfrey lines,” Mat. Vestn., 5(18), No. 1, 33–41 (1981).MathSciNetGoogle Scholar
  26. 26.
    T. Hoshina and K. Morita, “On rectangular products of topological spaces,” Topology Appl., 11, No. 1, 47–57 (1980).MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    M. Hušek, “Mappings from products, Topological structures. II,” Math. Centre Tracts, 115, 131–145 (1979).Google Scholar
  28. 28.
    T. Isiwata, “Generalizations of M-spaces. I,” Proc. Japan. Acad., 45, 359–363 (1969).MATHGoogle Scholar
  29. 29.
    T. Isiwata, “Generalizations of M-spaces. II,” Proc. Japan. Acad., 45, 364–367 (1969).MATHMathSciNetGoogle Scholar
  30. 30.
    T. Isiwata, “Z-mappings and C-embeddings,” Proc. Japan. Acad., 45, 889–893 (1969).MATHMathSciNetGoogle Scholar
  31. 31.
    I. Juhász, K. Kunen, and M. E. Rudin, “Two more hereditarily separable non-Lindelöf spaces,” Can. J. Math., 28, No. 5, 998–1005 (1976).MATHGoogle Scholar
  32. 32.
    M. Katětov, “A theorem on the Lebesgue dimension,” Časopis Pěst. Mat. Fys., 75, 79–87 (1950).Google Scholar
  33. 33.
    Y. Katuta, “On the covering dimension of inverse limits,” Proc. Amer. Math. Soc., 84, No. 4, 588–592 (1982).MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    B. S. Klebanov, “On factorization of continuous mappings of product spaces,” in: IV Tiraspol Symp. on General Topology and Its Applications, Shtiintsa, Kishinev (1979), pp. 60–62.Google Scholar
  35. 35.
    B. S. Klebanov, Continuous images of topological products of metric spaces [in Russian], Thesis, Moscow (1980).Google Scholar
  36. 36.
    Y. Kodama, “On subset theorems and the dimension of products,” Amer. J. Math., 91, No. 4, 486–498 (1969).MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    K. L. Kozlov and B. A. Pasynkov, “Dimension of subsets of topological products,” Proc. Second Soviet-Japan Symp. of Topology, Khabarovsk, 1989. Q.&A. in General Topology, 8, No. 1, 227–250 (1990).MathSciNetGoogle Scholar
  38. 38.
    K. Kuratowski, Topology, Academic Press, New York-London; PWN, Warsaw (1966).Google Scholar
  39. 39.
    K. Kuratowski and C. Ryll-Nardzewski, “A general theorem on selectors,” Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, 397–403 (1965).MATHMathSciNetGoogle Scholar
  40. 40.
    A. Lelek, “Dimension inequalities for unions and mappings of separable metric spaces,” Colloq. Math., 23, No. 2, 69–91 (1971).MATHMathSciNetGoogle Scholar
  41. 41.
    J. E. Mack and D. G. Jonson, “The Dedekind completion of C(X),” Pac. J. Math., 20, No. 2, 231–243 (1967).MATHGoogle Scholar
  42. 42.
    S. Mazurkiewicz, “Sur les problems κ et λ de Urysohn,” Fund. Math., 10, 311–319 (1927).MATHGoogle Scholar
  43. 43.
    E. Michael, “The product of a normal space and a separable metric space need not be normal,” Bull. Amer. Math. Soc., 69, No. 3, 375–376 (1963).MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    J. van Mill, Infinite-Dimensional Topology, North-Holland Math. Library, 43, North-Holland, Amsterdam (1989).MATHGoogle Scholar
  45. 45.
    K. Morita, “On the dimension of product spaces,” Amer. J. Math., 75, No. 2, 205–223 (1953).MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    K. Morita, “On the product of paracompact spaces,” Proc. Japan Acad., 39, No. 8, 559–563 (1963).MathSciNetGoogle Scholar
  47. 47.
    K. Morita, “Products of normal spaces with metric spaces,” Math. Ann., 154, No. 4, 365–382 (1964).MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    K. Morita, “On the dimension of the product of Tychonoff spaces,” Gen. Topology Appl., 3, No. 2, 125–133 (1973).CrossRefGoogle Scholar
  49. 49.
    K. Morita, “Čech cohomology and covering dimension for topological spaces,” Fund. Math., 87, No. 1, 31–52 (1975).MATHMathSciNetGoogle Scholar
  50. 50.
    K. Morita, “On the dimension of the product of topological spaces,” Tsukuba J. Math., 1, 1–6 (1977).MATHMathSciNetGoogle Scholar
  51. 51.
    K. Morita, “Dimension of general topological spaces,” in: Surveys in General Topology, Academic Press, New York-London-Toronto (1980), pp. 297–336.Google Scholar
  52. 52.
    S. Mrówka, “Recent results on E-compact spaces and structures of continuous functions,” in: Proc. Univ. of Oklahoma Topology Conf., 1972, Univ. of Oklahoma, Norman (1972), pp. 168–221.Google Scholar
  53. 53.
    K. Nagami, “Finite-to-one closed mappings and dimension II,” Proc. Japan Acad., 35, 437–439 (1959).MATHMathSciNetGoogle Scholar
  54. 54.
    K. Nagami, “Σ-spaces,” Fund. Math., 65, No. 2, 169–192 (1969).MATHMathSciNetGoogle Scholar
  55. 55.
    K. Nagami, “A note on the large inductive dimension of totally normal spaces,” J. Math. Soc. Japan, 21, No. 2, 282–290 (1969).MATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    K. Nagami, “Countable paracompactness of inverse limits and products,” Fund. Math., 73, No. 3, 261–270 (1972).MATHMathSciNetGoogle Scholar
  57. 57.
    K. Nagami, “Dimension of non-normal spaces,” Fund. Math., 109, No. 2, 113–121 (1980).MATHMathSciNetGoogle Scholar
  58. 58.
    J. Nagata, “Product theorems in dimension theory,” Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 15, No. 7, 439–448 (1967).MATHMathSciNetGoogle Scholar
  59. 59.
    J. Nagata and F. Siwiec, “A note on nets and metrization,” Proc. Japan Acad., 44, 623–627 (1968).MATHMathSciNetGoogle Scholar
  60. 60.
    T. Nishiura, “A subset theorem in dimension theory,” Fund. Math., 95, No. 2, 105–109 (1977).MATHMathSciNetGoogle Scholar
  61. 61.
    P. Nyikos, “The Sorgenfrey plane in dimension theory,” Fund. Math. 79, No. 2, 131–139 (1973).MATHMathSciNetGoogle Scholar
  62. 62.
    A. V. Odinokov, “On the dimension and rectangularity of product spaces with a Lashnev factor,” Vestn. Mosk. Univ., Ser. Mat. Mekh., 1, 59–62 (1999).MathSciNetGoogle Scholar
  63. 63.
    H. Ohta, “On normal nonrectangular products,” Quart. J. Math. Oxford., Ser. 2, 32, No. 127, 339–344 (1981).MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    H. Ohta, “Extensions of zero-sets in the products of topological spaces,” Topology Appl., 35, No. 1, 21–39 (1990).MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    A. Okuyama, “Some generalizations of metric spaces, their metrization theorems and product theorems,” Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 9, 236–254 (1967).MathSciNetGoogle Scholar
  66. 66.
    B. A. Pasynkov, “On universal compacta of given weight and given dimension,” Dokl. Akad. Nauk SSSR, 154, No. 5, 1042–1043 (1964).MathSciNetGoogle Scholar
  67. 67.
    B. A. Pasynkov, “A class of mappings and the dimension of normal spaces,” Sib. Mat. Zh., 5, No. 2, 356–376 (1964).MATHMathSciNetGoogle Scholar
  68. 68.
    B. A. Pasynkov, “Partial topological products,” Tr. Mosk. Mat. Obshch., 13, 136–245 (1965).MATHMathSciNetGoogle Scholar
  69. 69.
    B. A. Pasynkov, “On universal spaces,” Fund. Math., 60, No. 3, 285–308 (1968).MathSciNetGoogle Scholar
  70. 70.
    B. A. Pasynkov, “On the dimension of products of normal spaces,” Dokl. Akad. Nauk SSSR, 209, No. 4, 792–794 (1973).MathSciNetGoogle Scholar
  71. 71.
    B. A. Pasynkov, “The dimension of rectangular products,” Dokl. Akad. Nauk SSSR, 221, No. 2, 291–294 (1975).MathSciNetGoogle Scholar
  72. 72.
    B. A. Pasynkov, “On the dimension of topological products and limits of inverse systems,” Dokl. Akad. Nauk SSSR, 254, No. 6, 1332–1336 (1980).MathSciNetGoogle Scholar
  73. 73.
    B. A. Pasynkov, “Factorization theorems in dimension theory,” Usp. Mat. Nauk, 36, No. 3, 147–175 (1981).MATHMathSciNetGoogle Scholar
  74. 74.
    B. A. Pasynkov, “On monotonicity of dimension,” Dokl. Akad. Nauk SSSR, 267, No. 3, 548–552 (1982).MathSciNetGoogle Scholar
  75. 75.
    B. A. Pasynkov, “On dimension theory. Aspects of topology,” London Math. Soc. Lect. Note Ser., 93, 227–250, Cambridge Univ. Press, Cambridge (1985).Google Scholar
  76. 76.
    B. A. Pasynkov, “A factorization theorem for the dimension Ä,” in: Geometry of Immersed Manifolds [in Russian], Moscow (1986), pp. 70–75.Google Scholar
  77. 77.
    B. A. Pasynkov, “Monotonicity of dimension and dimension-increasing open mappings,” Tr. Mat. Inst. Steklova, 247, 202–213 (2004).MathSciNetGoogle Scholar
  78. 78.
    A. R. Pears and J. Mack, “Closed covers, dimension and quasi-ordered spaces,” Proc. London Math. Soc., 29, No. 3, 289–316 (1974).MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    E. Pol, “On the dimension of the product of metrizable spaces,” Bull. Acad. Polon. Sci., 26, No. 6, 525–534 (1978).MATHMathSciNetGoogle Scholar
  80. 80.
    T. V. Proselkova, “On a relationship between various posedness types of spaces,” in: General Topology: Spaces, Maps, and Functors [in Russian], Moscow (1992), pp. 111–125.Google Scholar
  81. 81.
    T. Przymusiński, “On the notion of n-cardinality,” Proc. Amer. Math. Soc., 69, No. 2, 333–338 (1978).CrossRefMATHMathSciNetGoogle Scholar
  82. 82.
    T. Przymusiński, “On the dimension of normal spaces and an example of M. Wage,” Proc. Amer. Math. Soc., 76, No. 2, 315–321 (1979).CrossRefMATHMathSciNetGoogle Scholar
  83. 83.
    T. Przymusiński, “Normality and paracompactness in finite and countable Cartesian products,” Fund. Math., 105, No. 2, 87–104 (1980).MATHGoogle Scholar
  84. 84.
    T. Przymusiński, “Product spaces,” in: Surveys in General Topology (G. M. Reed, ed.), Academic Press, New York (1980), pp. 399–429.Google Scholar
  85. 85.
    T. Przymusiński, “Products of perfectly normal spaces,” Fund. Math., 108, No. 2, 129–136 (1980).MATHMathSciNetGoogle Scholar
  86. 86.
    T. Przymusiński, “A solution of a problem of E. Michael,” Pac. J. Math., 114, No. 1, 235–242 (1984).MATHGoogle Scholar
  87. 87.
    L. R. Rubin, R. M. Schori, and J. J. Walsh, “New dimension-theory techniques for constructing in.nite-dimensional examples,” Gen. Topology Appl., 10, No. 1, 93–102 (1979).CrossRefMathSciNetGoogle Scholar
  88. 88.
    M. E. Rudin and M. Starbird, “Products with a metric factor,” Gen. Topology Appl., 5, 235–248 (1975).CrossRefMathSciNetGoogle Scholar
  89. 89.
    E. V. Shchepin, “Real-valued functions and canonical sets in product spaces and topological groups,” Usp. Mat. Nauk, 31, No. 6, 17–27 (1976).MathSciNetGoogle Scholar
  90. 90.
    E. V. Shchepin, “On topological products, groups, and a new class of spaces more general than the metric spaces,” Dokl. Akad Nauk SSSR, 226, No. 3, 527–529 (1976).MathSciNetGoogle Scholar
  91. 91.
    H. Tamano, “A note on the pseudocompactness of product of two spaces,” Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33, 225–230 (1960).MATHMathSciNetGoogle Scholar
  92. 92.
    K. Tamano, “A note on E. Michael’s example and rectangular products,” J. Math. Soc. Japan, 34, No. 2, 187–190 (1982).MATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    J. Terasawa, “On the zero-dimensionality of some non-normal product spaces,” Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 11, 167–174 (1972).MATHMathSciNetGoogle Scholar
  94. 94.
    K. Tsuda, “Some examples concerning the dimension of product spaces,” Math. Japon., 27, No. 2, 177–195 (1982).MATHMathSciNetGoogle Scholar
  95. 95.
    K. Tsuda, “An n-dimensional version of Wage’s example, Colloq. Math., 49, No. 1, 15–19 (1984).MATHMathSciNetGoogle Scholar
  96. 96.
    K. Tsuda, “A Wage-type example with a pseudocompact factor,” Topology Appl., 20, No. 2, 191–200 (1985).MATHCrossRefMathSciNetGoogle Scholar
  97. 97.
    K. Tsuda, Dimension theory of general spaces, Thesis, Univ. Tsukuba (1985).Google Scholar
  98. 98.
    M. Wage, The dimension of product spaces, Preprint, Yale Univ. (1976).Google Scholar
  99. 99.
    M. Wage, “On the dimension of product spaces,” Proc. Natl. Acad. Sci. USA, 75, No. 10, 4671–4672 (1978).MATHCrossRefMathSciNetGoogle Scholar
  100. 100.
    Y. Yajima, “Topological games and products. I,” Fund. Math., 113, No. 2, 141–153 (1981).MATHMathSciNetGoogle Scholar
  101. 101.
    Y. Yajima, “Topological games and products. II,” Fund. Math., 117, No. 1, 47–60 (1983).MATHMathSciNetGoogle Scholar
  102. 102.
    Y. Yajima, “On the dimension of limits of inverse systems,” Proc. Amer. Math. Soc., 91, No. 3, 461–466 (1984).MATHCrossRefMathSciNetGoogle Scholar
  103. 103.
    Y. Yajima, “On Σ-products of Σ-spaces,” Fund. Math., 123, No. 1, 49–57 (1984).MathSciNetGoogle Scholar
  104. 104.
    A. V. Zarelua, “On the Hurewicz theorem,” Mat. Sb., 60, No. 1, 17–28 (1963).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • K. L. Kozlov
    • 1
  • B. A. Pasynkov
    • 1
  1. 1.Moscow State UniversityRussia

Personalised recommendations