Journal of Mathematical Sciences

, Volume 143, Issue 4, pp 3386–3400 | Cite as

The second boundary-value problem for parabolic differential-difference equations

  • A. M. Selitskii
  • A. L. Skubachevskii


The question on the existence of solutions is considered for the second boundary-value problem for a parabolic differential-difference equation. It is shown that smoothness of strong solutions of this problem may be lost in a cylinder and is preserved only in certain cylindrical subdomains.


Hilbert Space Weak Solution Strong Solution Elliptic Operator Unique Strong Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Skubachevskii and R. V. Shamin, “The first mixed problem for a parabolic differential-difference equation,” Mat. Zametki, 66, No. 1, 145–153 (1999).MathSciNetGoogle Scholar
  2. 2.
    A. L. Skubachevskii and R. V. Shamin, “The mixed boundary-value problem for a parabolic differential-difference equation,” Funct. Differ. Equations, 8, No. 3–4, 407–424 (2001).MATHMathSciNetGoogle Scholar
  3. 3.
    A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel (1997).MATHGoogle Scholar
  4. 4.
    A. L. Skubachevskii and E. L. Tsvetkov, “The second boundary-value problem for elliptic differential-difference equations,” Differ. Uravn., 25, No. 10, 1766–1776 (1989).MathSciNetGoogle Scholar
  5. 5.
    M. A. Vorontsov, N. G. Iroshnikov, and R. L. Abernathy, “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation,” Chaos Solitons Fractals, 4, No. 8–9, 1701–1716 (1994).MATHCrossRefGoogle Scholar
  6. 6.
    A. V. Razgulin, “Rotational multi-petal waves in optical systems with 2-D feedback,” in: Chaos in Optics, Proceedings SPIE, Vol. 2039, 342–352 (1993).Google Scholar
  7. 7.
    A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics,” Nonlinear Anal., 32, No. 2, 261–278 (1998).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. L. Skubachevskii, “On the Hopf bifurcation for quasilinear parabolic functional differential equation,” Differ. Uravn., 34, No. 10, 1394–1401 (1998).MathSciNetGoogle Scholar
  9. 9.
    K. Kunisch and W. Shappacher, “Necessary conditions for partial differential equations with delay to generate a C 0-semigroup,” J. Different. Equations, 50, No. 1, 49–79 (1983).MATHCrossRefGoogle Scholar
  10. 10.
    G. Di Blasio, K. Kunisch, and E. Sinestrari, “L 2-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives,” J. Math. Anal. Appl., 102, No. 1, 38–57 (1984).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    O. Staffans, “Some well-posed functional equations which generate semigroups,” J. Different. Equations, 58, No. 2, 157–191 (1985).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Nakagiri, “Structural properties of functional differential equations in Banach spaces,” Osaka J. Math., 85, 353–398 (1988).MathSciNetGoogle Scholar
  13. 13.
    J. Wu, “Semigroup and integral form of a class of partial differential equations with infinite delay,” Differential Integral Equations, 4, No. 6, 1325–1351 (1991).MATHMathSciNetGoogle Scholar
  14. 14.
    V. V. Vlasov, “Solubility and properties of solutions of functional differential equations in a Hilbert space,” Mat. Sb., 186, No. 8, 67–92 (1995).MathSciNetGoogle Scholar
  15. 15.
    V. V. Vlasov, “On the solvability and estimates of solutions to functional differential equations in Sobolev spaces,” Tr. Mat. Inst. Steklova, 227, 109–121 (1999).MathSciNetGoogle Scholar
  16. 16.
    J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer, New York (1972).Google Scholar
  17. 17.
    J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin (1971).MATHGoogle Scholar
  18. 18.
    T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1995).MATHGoogle Scholar
  19. 19.
    A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations, Birkhauser, Basel (1994).Google Scholar
  20. 20.
    H. Triebel, Interpolation Theory, Functional Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin (1978).Google Scholar
  21. 21.
    V. P. Mikhailov, Partial Differential Equations [in Russian], Nauka, Moscow (1983).Google Scholar
  22. 22.
    R. V. Shamin, “Spaces of initial data for differential equations in a Hilbert space,” Mat. Sb., 194, No. 9, 141–156 (2003).MathSciNetGoogle Scholar
  23. 23.
    T. Kato, “Fractional powers of dissipative operators,” J. Math. Soc. Japan, 13, No. 3, 246–274 (1961).MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. L. Lions, “Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs,” J. Math. Soc. Japan, 14, No. 2, 233–241 (1962).MATHMathSciNetGoogle Scholar
  25. 25.
    A. McIntosh, “On the comparability of A 1/2 and A 1/2,” Proc. Amer. Math. Soc., 32, No. 2, 430–434 (1972).MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    P. Auscher, S. Hofmann, A. McIntosch, and P. Tchamitchian, “The Kato square root problem for higher order elliptic operators and systems on ℝn,” J. Evolution Equations, 1, No. 4, 361–385 (2001).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. M. Selitskii
    • 1
  • A. L. Skubachevskii
    • 1
  1. 1.Department of Differential Equations and Mathematical PhysicsPeoples Friendship University of RussiaMoscowRussia

Personalised recommendations