Advertisement

Journal of Mathematical Sciences

, Volume 142, Issue 3, pp 2172–2175 | Cite as

Asymptotic behavior of the density of the spectral measure of the Sturm-Liouville singular operator

  • A. S. Pechentsov
  • A. Yu. Popov
Article

Keywords

Asymptotic Behavior Asymptotic Expansion Spectral Function Small Neighborhood Spectral Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weyl, Math. Ann., 68, 220–268 (1910).CrossRefMathSciNetGoogle Scholar
  2. 2.
    E. C. Titchmarsh, “Some theorems on perturbation theory, III,” Proc. Roy. Soc., Ser. A., 207, 321–328 (1951).MathSciNetGoogle Scholar
  3. 3.
    B. M. Levitan, “On the theorem of expansion of second-order differential equations in terms of eigenfunctions,” Dokl. Akad. Nauk SSSR, 71, No. 4, 605–608 (1950).MATHMathSciNetGoogle Scholar
  4. 4.
    V. A. Marchenko, “Certain questions of the theory of one-dimensional linear second-order differential operators,” Trudy Mosk. Mat. Obshch., 1, 327–420 (1951).Google Scholar
  5. 5.
    F. V. Atkinson, “On the asymptotic behaviour of the Titchmarsh-Weyl m-coefficient and the spectral function for scalar second-order differential expressions,” Lect. Notes Math., 964.Google Scholar
  6. 6.
    C. Bennewitz, “Spectral asymptotics for Sturm-Liouville equations,” Proc. London Math. Soc. (3), 59, 294–338 (1989).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. J. Harris, “The asymptotic form of the spectral functions associated with a class of Sturm-Liouville equations,” Proc. Roy. Soc. Edinburgh, Ser. A, 100, 343–360 (1985).Google Scholar
  8. 8.
    M. S. P. Eastham, “The asymptotic form of the spectral function in Sturm-Liouville problems with a large potential like −x c (c ≤ 2),” Proc. Roy. Soc. Edinburgh, Ser. A, 128, 37–45 (1998).MATHMathSciNetGoogle Scholar
  9. 9.
    A. S. Pechentsov and A. Yu. Popov, “The asymptotic behavior of the spectral measure of the family of operators −y″ −εxy,” Differents. Uravn., 36, No. 3, 336–344 (2000).MathSciNetGoogle Scholar
  10. 10.
    A. S. Pechentsov and A. Yu. Popov, “The asymptotic behavior of spectral functions of differential operators −y″ −εax 2 y,” Mat. Zametki, 63, No. 2, 303–306 (1998).MathSciNetGoogle Scholar
  11. 11.
    E. C. Titchmarsh, Expansions in Terms of Eigenfunctions Related to Second-Order Differential Equations, Vol. 1 [Russian transl.], Moscow (1960).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. S. Pechentsov
  • A. Yu. Popov

There are no affiliations available

Personalised recommendations