Advertisement

Journal of Mathematical Sciences

, Volume 142, Issue 1, pp 1749–1762 | Cite as

A posteriori error estimates for viscous flow problems with rotation

  • E. Gorshkova
  • A. Mahalov
  • P. Neittaanmäki
  • S. Repin
Article

Abstract

A new functional type a posteriori error estimates for the Stokes problem with rotating term are presented. The estimates give guaranteed upper bounds for the energy norm of the error and provide reliable error indication. Computational properties of the estimates are demonstrated by a number of numerical examples. Bibliography: 37 titles.

Keywords

Posteriori Error Stokes Problem Posteriori Error Estimate Error Indicator Error Majorant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.MATHGoogle Scholar
  2. 2.
    W. Prager and J. L. Synge, “Approximation of the elasticity based on the concept of function space,” Quart. Appl. Math. 5 (1947), 241–269.MATHMathSciNetGoogle Scholar
  3. 3.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Gos. Izd. Tex. Lit., Moscow, 1957; English transl.: Pergamon, Oxford, 1964.Google Scholar
  4. 4.
    I. Babuška and W. C. Rheinboldt, “A-posteriori error estimates for the finite element method,” Intern. J. Numer. Methods Eng. 12 (1978), 1597–1615.CrossRefGoogle Scholar
  5. 5.
    I. Babuška and W. C. Rheinboldt, “Error estimates for adaptive finite element computations,” SIAM J. Numer. Anal. 15 (1978), 736–754.CrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York, 2000.MATHGoogle Scholar
  7. 7.
    I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Clarendon Press, New York, 2001.Google Scholar
  8. 8.
    P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation. Error Control and a Posteriori Estimates, Elsevier, New York-London, 2004.MATHGoogle Scholar
  9. 9.
    R. Verfurth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley, Teubner-New York, 1996.Google Scholar
  10. 10.
    L. A. Oganesjan and L. A. Ruhovec, “An investigation of the rate of convergence of variation-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary” [in Russian] Zhurn. Vych. Mat. Mat. Fiz. 9 (1969), 1102–1120.MathSciNetGoogle Scholar
  11. 11.
    O. C. Zienkeiewicz and J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis,” Intern. J. Numer. Methods Eng. 24 (1987), 337–357.CrossRefGoogle Scholar
  12. 12.
    M. Zlamal, “Some superconvergence results in the finite element method,” in: Mathematical Aspects of Finite Element Methods (A. Dold and B. Eckmann, Eds.), Lect. Notes Math. 606, Springer, Berlin, 1977.Google Scholar
  13. 13.
    L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lect. Notes Math. 1605, Springer-Verlag, 1995.Google Scholar
  14. 14.
    C. Bernardi, V. Girault, and F. Hecht, “A posteriori analysis of a penalty method and application to the Stokes problem,” Math. Models Methods Appl. Sci. 13 (2003), no. 11, 1599–1628.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Verfurth, “A posteriori error estimators for the Stokes equations” Numer. Math. 55 (1989), 309–325.CrossRefMathSciNetGoogle Scholar
  16. 16.
    R. E. Bank and B. D. Welfert, “A posteriori error estimates for the Stokes problem,” SIAM J. Numer. Anal. 28 (1991), no. 3, 591–623.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    F. Nobile, A Posteriori Error Estimates for the Finite Element Approximation of the Stokes Problem, TICAM Report 03-13.Google Scholar
  18. 18.
    E. Dari, R. Duran, and C. Padra, “Error estimators for nonconforming finite element approximation of the Stokes problem,” Math. Comp. 64 (1995), no. 211, 1017–1033.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    P. Houston, D. Schötzau, and T. Wihler, “hp-Adaptive discontinuous Galerkin finite element methods for the Stokes problem,” in: Proceedings of the 4th European Congress in Applied Sciences and Engineering. ECCOMAS 2004 (P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, and D. Knörzer, Eds.).Google Scholar
  20. 20.
    C. Carstensen and S. A. Funken, “Constant in Clement’s-interpolation error and residual based a posteriori error estimates in finite element methods,” East-West J. Numer. Anal. 8 (2000), no. 3, 153–175.MATHMathSciNetGoogle Scholar
  21. 21.
    S. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory” [in Russian], Zap. Nauchn. Semin. POMI 243 (1997), 201–214; English transl.: J. Math. Sci. (New York) 99 (2000), no. 1, 927–935.Google Scholar
  22. 22.
    S. Repin, “A posteriori estimates for the Stokes problem” [in Russian], Zap. Nauchn. Semin. POMI 259 (1999), 195–211; English transl.: J. Math. Sci. (New York) 109 (2002), no. 5, 1950–1964.Google Scholar
  23. 23.
    S. Repin, “Estimates of deviations from exact solutions for boundary-value problems with incompressibility condition” [in Russian], Algebra Anal. 16 (2004), no. 5, 121–164; English transl.: St.-Petersb. Math. J. 16 (2005), no. 5, 837–862.MathSciNetGoogle Scholar
  24. 24.
    E. Gorshkova, “A posteriori control of precision of approximate solution of the Stokes problem using projection on solenoidal fields” [in Russian]: In: Proceedings of the Polytechnic Symposium. April–December, 2004, St-Petersburg, 2005, pp. 19–23.Google Scholar
  25. 25.
    E. Gorshkova, P. Neittaanmaki, and S. Repin, “Comparative study of the a posteriori error estimators for the Stokes Problem,” in: Proceedings of the Sixth European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2005), Santiago de Compostela, Spain, Springer, 2006, pp. 254–259.Google Scholar
  26. 26.
    A. Babin, A. Mahalov, and B. Nicolaenko, “Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids,” European J. Mech. 15 (1996), 291–300.MATHMathSciNetGoogle Scholar
  27. 27.
    A. Babin, A. Mahalov, and B. Nicolaenko, “Resonances and regularity for Boussinesq equations,” Russian J. Math. Phys. 4 (1996), 417–428.MATHMathSciNetGoogle Scholar
  28. 28.
    A. Babin, A. Mahalov, and B. Nicolaenko, “Global regularity of 3D rotating Navier-Stokes equations for resonant domains,” Indiana Univ. Math. J. 48 (1999), no. 3, 1133–1176.MATHMathSciNetGoogle Scholar
  29. 29.
    J. P. Vanyo, Rotating Fluids in Engineering and Science, Dover Publ. Inc, New York, 2001.Google Scholar
  30. 30.
    T. Colin and P. Fabrie, “Rotating fluid at high Rossby number driven a surface stress: existence and convergence” (http://www.math.u-bordeaux.fr/ colin/web/navier.pdf).
  31. 31.
    P. Embid and A. Majda, “Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity,” Comm. Partial Diferential Equations 21 (1996), no. 3–4, 619–658.MATHMathSciNetGoogle Scholar
  32. 32.
    I. Gallagher, “Applications of Schochet’s methods to parabolic equations,” J. Math. Pures Appl. 77 (1998), 989–1054.MATHMathSciNetGoogle Scholar
  33. 33.
    O. A. Ladyzhenskaya and V. A. Solonnikov, “Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier-Stokes equation” [in Russian], Zap. Nauchn. Semin. LOMI 59 (1976), 81–116.Google Scholar
  34. 34.
    W. Doerfler, “A convergent adaptive algorithm for Poisson’s equation,” SIAM J. Numer. Anal. 33 (1996), 1106–1124.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    E. Chizhonkov and M. Olshanskii, “On the domain geometry dependence of the LBB condition,” Math. Model. Numer. Anal. 34 (2000), no. 5, 935–951.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    G. Stoyan, “Iterative Stokes solver in the harmonic Velte subspace,” Computing 67 (2001), 13–33.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    M. Dobrowolski, “On the LBB constant on stretched domains,” Math. Nachr. 254/255 (2003), 64–67.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • E. Gorshkova
    • 1
  • A. Mahalov
    • 2
  • P. Neittaanmäki
    • 1
  • S. Repin
    • 3
  1. 1.University of JyväskyläFinland
  2. 2.Arizona State UniversityUSA
  3. 3.V. A. Steklov Institute of Mathematics in St.-PetersburgRussia

Personalised recommendations