Advertisement

Journal of Mathematical Sciences

, Volume 141, Issue 6, pp 1668–1677 | Cite as

To solving inverse eigenvalue problems for parametric matrices

  • V. N. Kublanovskaya
  • V. B. Khazanov
Article

Abstract

Some statements of inverse eigenvalue problems for one-parameter and multiparameter regular polynomial matrices with linear and nonlinear dependences on spectral parameters are considered. Methods for solving inverse eigenvalue problems based on rank factorization, exhaustion, and reduction to nonlinear equations are proposed. Bibliography: 12 titles.

Keywords

Inverse Problem Vector Characteristic Spectral Parameter Spectral Problem Factorization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Kublanovskaya, “An approach to solving multiparameter problems,” Zap. Nauchn. Semin. POMI, 229, 191–246 (1995).Google Scholar
  2. 2.
    V. N. Kublanovskaya, “Methods and algorithms for solving spectral problems for polynomial and rational matrices,” Zap. Nauchn. Semin. POMI, 238, 3–329 (1997).Google Scholar
  3. 3.
    V. N. Kublanovskaya, “An approach to solving inverse eigenvalue problems for matrices,” Zap. Nauchn. Semin. POMI, 268, 95–114 (2000).Google Scholar
  4. 4.
    V. N. Kublanovskaya, “To solving multiparameter problems of algebra. 2,” Zap. Nauchn. Semin. POMI, 296, 89–107 (2003).Google Scholar
  5. 5.
    V. N. Kublanovskaya, “To solving multiparameter problems of algebra. 5,” Zap. Nauchn. Semin. POMI, 309, 144–153 (2004).MATHGoogle Scholar
  6. 6.
    V. N. Kublanovskaya, “To solving multiparameter problems of algebra. 6,” Zap. Nauchn. Semin. POMI, 323, 132–149 (2005).MATHMathSciNetGoogle Scholar
  7. 7.
    V. N. Kublanovskaya and V. B. Khazanov, “Exhaustion in spectral problems for matrix pencils,” in: Computational Processes and Systems [in Russian], Nauka (1987), pp. 138–147.Google Scholar
  8. 8.
    V. N. Kublanovskaya and V. B. Khazanov, Numerical Methods for Solving Parametric Problems of Algebra. Part 1. One-Parameter Problems [in Russian], Nauka, St.Petersburg (2004).Google Scholar
  9. 9.
    V. B. Khazanov, “Methods for solving spectral problems for multiparameter matrix pencils,” Zap. Nauchn. Semin. POMI, 296, 139–168 (2003).Google Scholar
  10. 10.
    V. B. Khazanov, “Methods for solving some parameter problems of algebra,” Zap. Nauchn. Semin. POMI, 323, 164–181 (2005).MATHMathSciNetGoogle Scholar
  11. 11.
    V. B. Khazanov, “To solving spectral problems formultiparameter polynomial matrices,” Zap. Nauchn. Semin. POMI, 334, 212–231 (2006).MathSciNetMATHGoogle Scholar
  12. 12.
    P. J. Browne and B. D. Sleeman, “Inverse multiparameter eigenvalue problems for matrices,” Proc. Edinb. Math. Soc., 31, No. 1, 151–155 (1988).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. N. Kublanovskaya
    • 1
  • V. B. Khazanov
    • 2
  1. 1.St.Peterburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia
  2. 2.St.Petersburg State Marine Technical UniversitySt.PetersburgRussia

Personalised recommendations