Journal of Mathematical Sciences

, Volume 140, Issue 5, pp 626–645 | Cite as

Structure of Chevalley groups: The proof from the book

  • N. A. Vavilov
  • M. R. Gavrilovich
  • S. I. Nikolenko


Different geometric proofs of the main structure theorems for Chevalley groups over commutative rings are described and compared. Known geometric proofs, published by I. Z. Golubchik, N. A. Vavilov, A. V. Stepanov, and E. B. Plotkin, such as A2 and A3 proofs for classical groups, A5 and D5 proofs for E6, A7 and D6 proofs for E7, and a D8 proof for E8 are given in outline. After that, A2 proofs for exceptional groups of types F4, E6, and E7, based on the multiple commutation, are discussed in more detail. This new proof, the proof from the Book, provides better bounds than any previously known proof. Moreover, it does not use results for fields, the factorization with respect to the radical, or any specific information concerning the structure constants and the equations defining exceptional Chevalley groups. Bibliography: 71 titles.


Normal Subgroup Commutative Ring Parabolic Subgroup Chevalley Group Noncentral Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bass, K-Theory [Russian translation], Mir, Moscow (1973).Google Scholar
  2. 2.
    Z. I. Borewicz and N. A. Vavilov, “Arragement of subgroups in the general linear group over a commutative ring,” Trudy Steklov Mat. Inst., 165, 24–42 (1984).Google Scholar
  3. 3.
    A. Borel, “Properties and linear representations of Chevalley groups,” in: A Seminar on Algebraic Groups [Russian translation], Moscow (1973), pp. 9–59.Google Scholar
  4. 4.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV–VI, Moscow (1972).Google Scholar
  5. 5.
    N. A. Vavilov, “Subgroups of split classical groups,” Doctoral Thesis, Leningrad (1987).Google Scholar
  6. 6.
    N. A. Vavilov, “The structure of split classical groups over a commutative ring,” Dokl. Acad. Nauk SSSR, 299, 1300–1303 (1988).MathSciNetGoogle Scholar
  7. 7.
    N. A. Vavilov, “On subgroups of split classical groups,” Trudy Steklov Mat. Inst., 183, 29–42 (1990).MathSciNetMATHGoogle Scholar
  8. 8.
    N. A. Vavilov, “On the signs of structure constants,” Algebra Analiz, to appear.Google Scholar
  9. 9.
    N. A. Vavilov, “Decomposition of unipotents in the adjoint representation of the Chevalley groups of type E6,” Algebra Analiz, to appear.Google Scholar
  10. 10.
    N. A. Vavilov and M. R. Gavrilovich, “An A2-proof of structure theorems for Chevalley groups of types E6 and E7,” Algebra Analiz, 16, No. 4, 54–87 (2004).MathSciNetGoogle Scholar
  11. 11.
    N. A. Vavilov and S. I. Nikolenko, “An A2-proof of structure theorems for Chevalley groups of types F4 and 2E6,” Algebra Analiz, to appear.Google Scholar
  12. 12.
    N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, “Computations in Chevalley groups over commutative rings,” Dokl. Akad. Nauk SSSR, 40, No. 1, 145–147 (1990).MathSciNetGoogle Scholar
  13. 13.
    I. Z. Golubchik, “On the general linear group over an associative ring,” Usp. Mat. Nauk, 28, No. 3, 179–180 (1973).MathSciNetGoogle Scholar
  14. 14.
    I. Z. Golubchik, “On normal subgroups of the orthogonal group over an associative ring with involution,” Usp. Mat. Nauk, 30, No. 6, 165 (1975).MathSciNetMATHGoogle Scholar
  15. 15.
    I. Z. Golubchik, “On normal subgroups of linear and unitary groups over associative rings,” in: Spaces over Algebras and Some Problems in Net Theory, Ufa (1985), pp. 122–142.Google Scholar
  16. 16.
    V. I. Kopeiko, “Stabilization of symplectic group over a ring of polynomials,” Mat. Sb., 106, No. 1, 94–107 (1987).MathSciNetGoogle Scholar
  17. 17.
    A. Yu. Luzgarev, “On overgroups of E(E6, R) and E(E7, R) in their minimal representations,” Zap. Nauchn. Semin. POMI, 319, 216–243 (2004).MATHGoogle Scholar
  18. 18.
    R. Steinberg, Lectures on Chevalley Groups [Russian translaiton], Moscow (1975).Google Scholar
  19. 19.
    A. V. Stepanov, “Stabilization properties in the theory of linear groups over rings,” Ph. D. Thesis, Leningrad (1987).Google Scholar
  20. 20.
    A. A. Suslin, “On the structure of the special linear group over a ring of polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 41, No. 2, 235–253 (1977).MathSciNetMATHGoogle Scholar
  21. 21.
    A. A. Suslin and V. I. Kopeiko, “Quadratic modules and orthogonal groups over rings of polynomials, ” Zap. Nauchn. Semin. POMI, 71, 216–250 (1977).MathSciNetMATHGoogle Scholar
  22. 22.
    E. Abe, “Chevalley groups over local rings,” Tôohoku Math. J., 21, No. 3, 474–494 (1969).MATHGoogle Scholar
  23. 23.
    E. Abe, “Whitehead groups of Chevalley groups over polynomial rings,” Commun. Algebra, 11, No. 12, 1271–1307 (1983).MATHGoogle Scholar
  24. 24.
    E. Abe, “Chevalley groups over commutative rings,” in: Proceedings of the Conference on Radical Theory, Sendai (1988), pp. 1–23.Google Scholar
  25. 25.
    E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989).Google Scholar
  26. 26.
    E. Abe and J. Hurley, “Centers of Chevalley groups over commutative rings,” Comm. Algebra, 16, No. 1, 57–74 (1988).MathSciNetMATHGoogle Scholar
  27. 27.
    E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).MathSciNetMATHGoogle Scholar
  28. 28.
    M. Aschbacher, “Some multilinear forms with large isometry groups,” Geom. Dedic., 25, No. 1–3, 417–465 (1988).MathSciNetMATHGoogle Scholar
  29. 29.
    M. Aschbacher, “The geometry of trilinear forms,” in: Finite Geometries, Buildings, and Related Topics, Oxford Univ. Press (1990), pp. 75–84.Google Scholar
  30. 30.
    H. Azad, M. Barry, and G. M. Seitz, “On the structure of parabolic subgroups,” Comm. Algebra, 18, 551–562 (1990).MathSciNetMATHGoogle Scholar
  31. 31.
    A. Bak, “The stable structure of quadratic modules,” Thesis, Columbia Univ. (1969).Google Scholar
  32. 32.
    A. Bak, “Nonabelian K-theory: The nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    A. Bak and N. Vavilov, “Normality of the elementary subgroup functors,” Math. Proc. Cambridge Philos. Soc., 118, No. 1, 35–47 (1995).MathSciNetMATHGoogle Scholar
  34. 34.
    A. Bak and N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000).MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    R. Carter, Simple Groups of Lie Type, Wiley, London et al. (1972).MATHGoogle Scholar
  36. 36.
    A. M. Cohen and R. H. Cushman, “Gröbner bases and standard monomial theory,” in: Computational Algebraic Geometry, Birkhauser (1993), pp. 41–60.Google Scholar
  37. 37.
    B. N. Cooperstein, “The fifty-six-dimensional module for E7. I. A four form for E7,” J. Algebra, 173, 361–389 (1995).CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    D. L. Costa and G. E. Keller, “The E(2, A) sections of SL(2, A),” Ann. Math., 134, No. 1, 159–188 (1991).CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    D. L. Costa and G. E. Keller, “Radix redux: normal subgroups of symplectic groups,” J. Reine Angew. Math., 427, No. 1, 51–105 (1991).MathSciNetGoogle Scholar
  40. 40.
    D. L. Costa and G. E. Keller, “On the normal subgroups of Γ2 groups,” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999).CrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    P. Gilkey and G. M. Seitz, “Some representations of exceptional Lie algebras,” Geom. Dedic., 25, No. 1–3, 407–416 (1988).MathSciNetMATHGoogle Scholar
  42. 42.
    A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin et al. (1989).MATHGoogle Scholar
  43. 43.
    R. Hazrat, “Dimension theory and nonstable K 1 of a quadratic module,” K-Theory, 27, 293–327 (2002).CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    R. Hazrat, “On K-theory of classical-like groups,” Doktorarbeit, Uni. Bielefeld (2002).Google Scholar
  45. 45.
    R. Hazrat and N. A. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    W. van der Kallen, “Another presentation for the Steinberg group,” Proc. Nederl. Akad. Wetensch., Ser. A, 80, 304–312 (1977).MATHGoogle Scholar
  47. 47.
    V. Lakshmibai and C. S. Seshadri, “Standard monomial theory,” in: Hyderabad Conference on Algebraic Groups, Manoj Prakashan, Madras (1991), pp. 279–323.Google Scholar
  48. 48.
    Li Fuan, “The structure of symplectic group over arbitrary commutative rings,” Acta Math. Sinica, New Series, 3, No. 3, 247–255 (1987).MATHGoogle Scholar
  49. 49.
    Li Fuan, “The structure of orthogonal groups over arbitrary commutative rings,” Chinese Ann. Math., 10B, No. 3, 341–350 (1989).Google Scholar
  50. 50.
    W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector,” Proc. Amer. Math. Soc., 84, No. 4, 605–608 (1982).CrossRefMathSciNetMATHGoogle Scholar
  51. 51.
    H. Matsumoto, “Sur les sous-groupes arithmetiques des groupes semi-simples déployés, ” Ann. Sci. Ecole Norm. Sup., 4ème Sér., No. 2, 1–62 (1969).Google Scholar
  52. 52.
    E. B. Plotkin, “On the stability of the K1-functor for Chevalley groups of type E7,” J. Algebra, 210, 67–85 (1998).CrossRefMathSciNetMATHGoogle Scholar
  53. 53.
    E. B. Plotkin, A. A. Semenov, and N. A. Vavilov, “Visual basic representations: an atlas,” Int. J. Algebra Comput., 8, No. 1, 61–97 (1998).CrossRefMathSciNetMATHGoogle Scholar
  54. 54.
    A. S. Sivatski and A. V. Stepanov, “On the word length of commutators in GLn(R),” K-Theory, 17, 295–302 (1999).CrossRefMathSciNetMATHGoogle Scholar
  55. 55.
    M. R. Stein, “Generators, relations, and coverings of Chevalley groups over commutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971).CrossRefMathSciNetMATHGoogle Scholar
  56. 56.
    M. R. Stein, “Stability theorems for K1, K2 and related functors modeled on Chevalley groupes,” Jpn. J. Math., 4, No. 1, 77–108 (1978).Google Scholar
  57. 57.
    A. V. Stepanov and N. A. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).CrossRefMathSciNetMATHGoogle Scholar
  58. 58.
    A. V. Stepanov and N. A. Vavilov, “On the length of commutators in Chevalley groups,” K-Theory, to appear.Google Scholar
  59. 59.
    K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings, ” J. Algebra, 175, No. 3, 526–536 (1995).CrossRefMathSciNetMATHGoogle Scholar
  60. 60.
    G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55, Part II, 693–710 (1986).MathSciNetGoogle Scholar
  61. 61.
    L. N. Vaserstein, “On the normal subgroups of the group GLn of a ring,” Lect. Notes Math., 854, 454–465 (1981).MathSciNetGoogle Scholar
  62. 62.
    L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).MathSciNetGoogle Scholar
  63. 63.
    L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings,” Amer. J. Math., 110, No. 5, 955–973 (1988).CrossRefMathSciNetMATHGoogle Scholar
  64. 64.
    L. N. Vaserstein, “Normal subgroups of symplectic groups over rings,” K-Theory, 2, No. 5, 647–673 (1989).CrossRefMathSciNetMATHGoogle Scholar
  65. 65.
    L. N. Vaserstein and You Hong, “Normal subgroups of classical groups over rings,” J. Pure Appl. Algebra, 105, No. 1, 93–106 (1995).CrossRefMathSciNetMATHGoogle Scholar
  66. 66.
    N. A. Vavilov, “Structure of Chevalley groups over commutative rings,” in: Proceedings of the Conference on Nonassociative Algebras and Related Topics (Hiroshima-1990), World Sci. Publ., London et al. (1991), pp. 219–335.Google Scholar
  67. 67.
    N. A. Vavilov, “Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como-1993), Cambridge Univ. Press (1995), pp. 233–280.Google Scholar
  68. 68.
    N. A. Vavilov, “A third look at weight diagrams,” Rendiconti Semin. Matem. Univ. Padova, 204, 1–45 (2000).MathSciNetGoogle Scholar
  69. 69.
    N. A. Vavilov, “Do it yourself: structure constants for Lie algebras of type El,” Zap. Nauchn. Semin. POMI, 281, 60–104 (2001).Google Scholar
  70. 70.
    N. A. Vavilov and E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Appl. Math., 45, 73–115 (1996).CrossRefMathSciNetMATHGoogle Scholar
  71. 71.
    J. S. Wilson, “The normal and subnormal structure of general linear groups,” Proc. Cambridge Phil. Soc., 71, 163–177 (1972).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. A. Vavilov
    • 1
  • M. R. Gavrilovich
    • 2
  • S. I. Nikolenko
    • 3
  1. 1.St.Petersburg State UniversitySt.PetersburgRussia
  2. 2.Oxford UniversityOxfordUK
  3. 3.St.Petersburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations