Advertisement

Journal of Mathematical Sciences

, Volume 136, Issue 6, pp 4419–4458 | Cite as

Classes of Maxwell spaces that admit subgroups of the Poincaré group

  • M. A. Parinov
Article
  • 12 Downloads

Abstract

A Maxwell space is a triple (M, g, F), where M is the four-dimensional Minkowski space or a domain in it, g is a pseudo-Euclidean metric on M, and F is a closed exterior 2-form on M. In this paper, we give an exhaustive description of classes of Maxwell spaces that admit subgroups of the Poincaré group. Representatives of all classes are constructed.

Keywords

Symmetry Group Dimensional Group Maxwell Space Parabolic Rotation Isotropic Hyperplane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bacry, P. Combe, and P. Sorba, “Connected subgroups of the Poincaré group, I,” Rep. Math. Phys., 5, No. 2, 145–186 (1974).CrossRefGoogle Scholar
  2. 2.
    H. Bacry, P. Combe, and P. Sorba, “Connected subgroups of the Poincaré group, II, Rep. Math. Phys., 5, No. 3, 361–392 (1974).CrossRefGoogle Scholar
  3. 3.
    I. V. Bel’ko, “Subgroups of the Lorentz-Poincaré group,” Izv. Akad. Nauk Belorus. SSR, 1, 5–13 (1971).MathSciNetGoogle Scholar
  4. 4.
    O. G. Belova, A. N. Zarembo, M. A. Parinov, O. O. Sergeeva, and Yu. G. Ugarova, “Classification of static electromagnetic fields over subgroups of the Poincaré group,” Nauch. Tr. Ivan. Univ., Ser. Mat., 3, 11–22 (2000).Google Scholar
  5. 5.
    A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin (1987).Google Scholar
  6. 6.
    P. Combe, and P. Sorba, “Electromagnetic fields with symmetry,” Physica, A80,No. 3, 271–286 (1975).MathSciNetGoogle Scholar
  7. 7.
    A. S. Ivanova and M. A. Parinov, “First integrals of Lorentz equations for some classes of electromagnetic fields,” Proc. Steklov Inst. Math., 236, 186–192 (2002).MathSciNetGoogle Scholar
  8. 8.
    A. Janner and E. Ascher, “Space-time symmetry of linearly polarized electromagnetic plane waves,” Lett. Nuovo Cim., 2, No. 15, 703–705 (1969).Google Scholar
  9. 9.
    A. Janner and E. Ascher, “Space-time symmetry of transverse electromagnetic plane waves,” Helv. Phys. Acta, 43, No. 3, 296–303 (1970).MathSciNetGoogle Scholar
  10. 10.
    A. Janner and E. Ascher, “Relativistic symmetry groups of uniform electromagnetic fields, Physica, 48, No. 3, 425–446 (1970).MathSciNetCrossRefGoogle Scholar
  11. 11.
    N. A. Kosheleva, A. K. Kuramshina, and M. A. Parinov, “Group classification of Maxwell spaces admitting elliptic helices,” Nauch. Tr. Ivan. Univ., Ser. Mat., 4, 73–82 (2001).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (1967).Google Scholar
  13. 13.
    D. A. L’vov and M. A. Parinov, “Group classification of Maxwell spaces admitting parabolic rotations,” Nauch. Tr. Ivan. Univ., Ser. Mat., 5, 51–62 (2002).Google Scholar
  14. 14.
    E. G. Morokhova, “Group classification of Maxwell spaces admitting proportional bi-rotations,” Nauch. Tr. Ivan. Univ., Ser. Mat., 5, 63–70 (2002).Google Scholar
  15. 15.
    E. V. Morozova and M. A. Parinov, “Group classification of Maxwell spaces admitting translations along isotropic straight lines,” Nauch. Tr. Ivan. Univ., Ser. Mat., 4, 87–94 (2001).Google Scholar
  16. 16.
    M. A. Parinov, “Problem of group classification of electromagnetic fields,” in: Contemporary Methods of Theory of Functions and Related Problems. Voronezh Winter Math. School [in Russian], Voronezh (1999), p. 156.Google Scholar
  17. 17.
    M. A. Parinov, “Group classification of Maxwell spaces,” in: Contemporary Analysis and Its Applications. Voronezh Winter Math. School [in Russian], Voronezh (2000), pp. 129–130.Google Scholar
  18. 18.
    M. A. Parinov, “Classes of Maxwell spaces admitting translations,” Sovr. Mat. Prilozh., 10, 157–166 (2003).Google Scholar
  19. 19.
    M. A. Parinov, Einstein-Maxwell spaces and Lorentz equations [in Russian], Ivanovo (2003).Google Scholar
  20. 20.
    N. S. Polezhaeva and M. A. Parinov, Group classification of 4-potentials admitting parabolic rotations [in Russian], Preprint, Ivanovo (2003); deposited at the All-Russian Institute for Scientific and Technical Information, Moscow (2003), No. 1489-V2003.Google Scholar
  21. 21.
    A. I. Vorob’ev, “Group classification of Maxwell spaces admitting hyperbolic helices,” Nauch. Tr. Ivan. Univ., Ser. Mat., 4, 35–42 (2001).Google Scholar
  22. 22.
    A. I. Vorob’ev, “On the classification of Maxwell spaces admitting hyperbolic helices and first integrals of Lorentz equations,” Sovr. Mat. Prilozh., 10, 39–47 (2003).Google Scholar
  23. 23.
    A. I. Vorob’ev, “Classification of potential stuctures invariant relative to hyperbolic helices,” Mat. Prilozh. (Ivanovo), 1, 41–50 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. A. Parinov
    • 1
  1. 1.Ivanovo State UniversityRussia

Personalised recommendations