Skip to main content
Log in

The Thom isomorphism for nonorientable bundles

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The classical theory of Thom isomorphisms is extended to nonorientable vector bundles. The properties of orientation sheaves of bundles and of the Thom and Euler classes τ and e with respect to projections, fiber maps, Cartesian products, and Whitney sums of bundles are studied. The validity of standard constructions used in the applications of the classes τ and e is confirmed. It is shown that the Thom isomorphisms, together with their form, are consequences of the Poincaré duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer, New York (1982).

    Google Scholar 

  2. N. Bourbaki, Éléments de Mathématique. Fasc. II. Livre III: Topologie Géné rale. Chapitre 1: Structures Topologiques. Chapitre 2: Structures Uniformes, Hermann, Paris (1965).

    Google Scholar 

  3. G. E. Bredon, Sheaf Theory, 2nd edition, Springer (1997). (First edition: G. E. Bredon, Sheaf Theory, McGraw-Hill, New York (1967).)

  4. H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton (1956).

    Google Scholar 

  5. H. Cartan, Cohomologie des Groups, Suite Spectral, Faisceaux, Seminaire, École Normal Sup., 1950–1951.

  6. A. Dold, Lectures on Algebraic Topology, Springer, New York (1972).

    Google Scholar 

  7. R. Godement, Topologie Algébrique et Théorie des Faisceaux, Hermann, Paris (1958).

    Google Scholar 

  8. A. Grothendieck, “Sur quelques points d’algébre homologique,” Tohoku Math. J., 9, No. 2, 119–221 (1957).

    MATH  MathSciNet  Google Scholar 

  9. D. Husemoller, Fibre Bundles, McGraw-Hill, New York (1966).

    Google Scholar 

  10. C. U. Jensen, Les Foncteours Dérivés de lim et Leurs Applications en Théorie des Modules, Lect. Notes Math. Vol. 254, Springer, Berlin—New York (1972).

    Google Scholar 

  11. A. E. Kharlap, “Local homology and cohomology, homological dimension, and generalized manifolds,” Mat. Sb., 96, No. 3, 347–373 (1975).

    MathSciNet  Google Scholar 

  12. V. I. Kuz’minov, “On derivative functors of the projective limit functor,” Sib. Mat. Zh., 8, No. 2, 333–345 (1967).

    MathSciNet  Google Scholar 

  13. W. Massey, Homology and Cohomology Theory, Marcel Dekker, New York (1978).

    Google Scholar 

  14. J. Milnor and J. Stashe., Characteristic Classes, Princeton Univ. Press, Princeton (1974).

    Google Scholar 

  15. Yu. B. Rudyak, “On the Thom—Dold isomorphism for nonorientable bundles,” Dokl. Akad. Nauk SSSR, 255, No. 6, 1323–1325 (1980).

    MATH  MathSciNet  Google Scholar 

  16. E. G. Sklyarenko, “On the theory of generalized manifolds,” Izv. Akad. Nauk SSSR Ser. Mat. 35, No. 4, 831–843 (1971).

    MATH  MathSciNet  Google Scholar 

  17. E. G. Sklyarenko, “Homology and cohomology of general spaces,” in: Sovremennye Problemy Matematiki. Fundamental’nye Napravleniya [in Russian], Vol. 50, Moscow (1989), pp. 129–266.

    MATH  MathSciNet  Google Scholar 

  18. E. G. Sklyarenko, “Homology and cohomology relations between sets. Homology and cohomology of an entourage of a closed set,” Izv. Ross. Akad. Nauk Ser. Mat., 56, No. 5, 1040–1071 (1992).

    MATH  Google Scholar 

  19. E. G. Sklyarenko, “On the nature of homological multiplications and duality,” Usp. Mat. Nauk, 49, No. 1, 141–198 (1994).

    MATH  MathSciNet  Google Scholar 

  20. E. G. Sklyarenko, “Hyper(co)homologies for left exact covariant functors and the theory of homologies of topological spaces,” Usp. Mat. Nauk, 50, No. 3, 109–146 (1995).

    MATH  MathSciNet  Google Scholar 

  21. E. G. Sklyarenko, “On cohomologies with supports,” Usp. Mat. Nauk, 51, No. 1, 167–168 (1996).

    MATH  MathSciNet  Google Scholar 

  22. E. G. Sklyarenko, “On homological multiplications,” Izv. Ross. Akad. Nauk Ser. Mat., 61, No. 1, 157–176 (1997).

    MATH  MathSciNet  Google Scholar 

  23. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York (1966).

    Google Scholar 

  24. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J. (1964).

    Google Scholar 

  25. R. M. Switzer, Algebraic Topology—Homotopy and Homology, Springer, New York (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 9, No. 4, pp. 55–103, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklyarenko, E.G. The Thom isomorphism for nonorientable bundles. J Math Sci 136, 4166–4200 (2006). https://doi.org/10.1007/s10958-006-0226-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0226-3

Keywords

Navigation