Advertisement

Journal of Mathematical Sciences

, Volume 136, Issue 2, pp 3786–3793 | Cite as

Local a posteriori estimates for the Stokes problem

  • S. I. Repin
Article
  • 18 Downloads

Abstract

We obtain computable estimates of the difference between an exact solution of the Stokes problem and an approximation from a respective energy class. The estimates are presented in terms of local norms and linear functionals. Certain generalizations to some nonlinear problems are discussed. Bibliography: 17 titles.

Keywords

Exact Solution Nonlinear Problem Local Norm Linear Functional Stokes Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley (2000).Google Scholar
  2. 2.
    C. Carstensen and S. Bartels, “Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I: Low-order conforming, nonconforming, and mixed FEM,” Math. Comp., 71, No. 239, 945–969 (2002).MathSciNetCrossRefGoogle Scholar
  3. 3.
    W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhäuser, Berlin (2003).Google Scholar
  4. 4.
    M. Feistauer, Mathematical Methods in Fluid Dynamics, Longman, Harlow (1993).Google Scholar
  5. 5.
    S. Korotov, P. Neittaanmaki, and S. Repin, “A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery,” J. Numer. Math., 11, 33–59 (2003).MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Fuchs and G.A. Seregin, “Variational methods for problems from plasticity theory and for generalized Newtonian fluids,” Lect. Notes Math., 1749 (2000).Google Scholar
  7. 7.
    V. Girault and P. A. Raviart, “Finite element approximation of the Navier-Stokes equations,” Lect. Notes Math., 749 (1979).Google Scholar
  8. 8.
    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969).Google Scholar
  9. 9.
    O. A. Ladyzhenskaya, “On nonlinear problems of continuum mechanics,” Proc. Internat. Congr. Math. (Moscow 1966), Amer. Math. Soc. Transl. (2), 70 (1968).Google Scholar
  10. 10.
    O. A. Ladyzhenskaya, “On some modifications of the Navier-Stokes equations for large gradients of velocity,” Zap. Nauchn. Sem. LOMI, 7, 126–154 (1968).MATHGoogle Scholar
  11. 11.
    S. I. Repin, “A posteriori estimates in local norms,” J. Math. Sci., 124, 5026–5035 (2004).MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. I. Repin, “A posteriori estimates for the Stokes problem,” J. Math. Sci., 109, 1950–1964 (2002).MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Repin, “Estimates of deviations for generalized Newtonian fluids,” Zap. Nauchn. Semin. POMI, 288, 178–203 (2002).MATHGoogle Scholar
  14. 14.
    S. Repin, “A posteriori estimates of the accuracy of approximate solutions of boundary-value problems with incompressibility condition,” Algebra Analiz, 16, 121–164 (2004).MathSciNetGoogle Scholar
  15. 15.
    S. Repin, S. Sauter, and A. Smolianski, “A posteriori error estimation for the Dirichlet problem with account of the error in approximation of boundary conditions,” Computing, No. 3, 147–168 (2003).Google Scholar
  16. 16.
    R. Verfürth, “A posteriori error estimators for the Stokes equations,” Numer. Math., 55, 309–326 (1989).MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    O. C. Zienkiewicz and J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis,” Int. J. Numer. Meth. Engrg., 24, 337–357 (1987).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. I. Repin
    • 1
  1. 1.St.Petersburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations